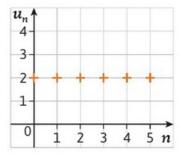
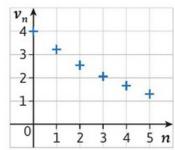
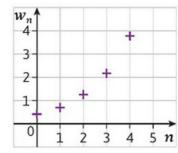
Suites arithmétiques – Exercices – Devoirs

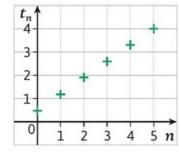
Exercice 1

- 1. (u_n) est une suite arithmétique. On sait que u_0 = 0,5 et que u_3 = 2,6. Calculer la raison de la suite (u_n) , puis u_2 .
- 2. (v_n) est une suite arithmétique de premier terme v_0 = -2 et de raison r = 1,3.
 - a. Calculer les termes v_1 , v_2 et v_3 .
 - b. Écrire la relation de récurrence exprimant v_{n+1} en fonction de v_n .
 - c. Donner l'expression de v_n en fonction de n.
 - d. Calculer v₅₀
- 3. Voici 4 représentations graphiques de suites numériques.
 - a. Indiquer celles qui correspondent à des suites arithmétiques.









- b. Pour chacune des suites arithmétiques précédentes, indiquer le premier terme, la raison ainsi que la relation explicite
- 4. Représenter par un nuage de points les 5 premiers termes des suites (a_n) et (b_n).

a.
$$a_0 = -6$$
 et $a_{n+1} = a_n + 3$

b.
$$b_n = 7 - 3n$$

- 5. Pour chacune des suites arithmétiques suivantes, donner son sens de variation en justifiant.
 - a. $u_0 = 1$ et pour tout nombre entier positif n, $u_{n+1} = -0.85 + u_n$.
 - b. Pour tout nombre entier positif n, $v_n = \frac{2+3n}{4}$

Exercice 2

Pour les suites suivantes définies sur \mathbb{N} , indiquer celles qui sont arithmétiques et lorsque cela est le cas préciser la relation explicite :

a.
$$u_n = \sqrt{n} + 1$$

b.
$$u_{n+1} = \frac{u_n - 5}{2}$$
 et $u_0 = 7$

c.
$$u_n = (n-1)^2 - \sqrt{n^4}$$

d.
$$u_{n+1} = 2u_n - 9$$
 et $u_0 = 0$

e.
$$u_n = \sqrt{(1-4n)^2}$$

Exercice 3

Soit (u_n) une suite arithmétique définie \mathbb{N} sur telle que u_3 =8 et u_9 =-16 Quelle est la raison de la suite (u_n) ainsi que sa relation explicite ?

Exercice 4

La pression atmosphérique est exprimée en hectopascal (hPa). On rappelle que la pression atmosphérique au niveau de la mer est de 1 013,25 hPa. Pour évaluer la pression atmosphérique, les alpinistes utilisent la règle simplifiée suivante : « la pression atmosphérique diminue de 0,11 hPa quand l'altitude augmente de 1 m ».

- 1. De combien d'hectopascals diminue la pression atmosphérique quand l'altitude augmente de 100 mètres ?
- 2. Pour tout entier n, on note p_n la pression atmosphérique (en hPa) à l'altitude de n mètres ; les calculs effectuées utilisent la règle simplifiée décrite dans l'énoncé. Ainsi, p_0 = 1 013,25.
 - a. Pour tout entier n, donner une relation entre p_{n+1} et p_n . En déduire que (p_n) est une suite arithmétique dont on précisera la raison.
 - b. Pour tout entier, n, donner expression de p_n en fonction de n.
 - c. A l'aide de la calculatrice, déterminer l'altitude à partir de laquelle la pression atmosphérique est inférieure à 960 hPa.

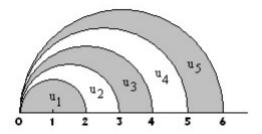
Exercice 5

Dans cet exercice U_n désigne une suite arithmétique de raison r et de premier terme U_0 .

- 1. Calculer U_{10} si r = 6 et $U_0 = -11$;
- 2. Calculer U_{26} si r = -12 et $U_7 = 14$;

Exercice 6

Montrer que la suite (u_n) des aires définies par la figure ci-dessus est arithmétique.



Exercice 7

 (u_n) est une suite arithmétique de raison r.

- 1) On sait que $u_0 = 2$ et r = -3. Calculer u_{10} , u_{20} , u_{100} .
- 2) On sait que $u_0 = 2$ et $u_1 = 5$. Calculer r et u_2 et u_3
- 3) On sait que $u_0 = 2$ et $u_2 = 10$. Calculer r et u_1 , u_5

Exercice 8

Pour les questions suivantes, préciser si la suite (u_n) est arithmétique ou non.

1)
$$u_n = 2n + 3$$

2)
$$u_n = \frac{3n+1}{2}$$

$$3) u_n = n^2 - n$$

4)
$$\begin{cases} u_0 = 2 \\ u_{n+1} = 2 + u \end{cases}$$

Exercice 9

Un arbre mesure un mètre lors de sa plantation et sa taille augmente chaque année de la même longueur.

- 1. L'arbre a doublé de hauteur en deux ans. De combien a-t-il poussé chaque année ?
- 2. Par quel nombre sera multipliée sa taille de départ au bout de 4 ans ?

- 3. On note u_0 sa taille de départ, en mètres, et U_n sa taille n années après sa plantation. Quelle est la nature de la suite (U_n) ? Exprimer U_n en fonction de n.
- 4. Au bout de combien d'années la taille de l'arbre dépassera-t-elle 25 mètres ?

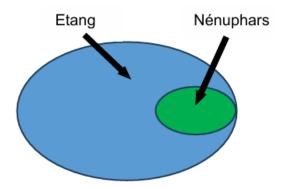
Exercice 10

Au mois de janvier 2001, Vincent a économisé $11,50 \in$, au mois de février, il a économisé $1,15 \in$ de plus qu'en janvier, en mars $1,15 \in$ de plus qu'en févier, etc. Il économise ainsi chaque mois $1,15 \in$ de plus qu'au mois précédent. On note U_0 l'économie de janvier 2001, U_1 celle réalisée en février 2001, U_2 en mars, etc.

- 1. Comment est notée l'économie réalisée au mois de décembre 2002 ?
- 2. Calculer U₁, U₂ et U₃.
- 3. Quelle est la nature de la suite (U_n)?
- 4. Exprimer Un en fonction de n.
- 5. Quelle somme Vincent va-t-il économiser en décembre 2002 ?

Exercice 11

Albert a acquis un étang d'une surface de 2 000 m². Le jour de son anniversaire, un dimanche, il installe des nénuphars sur une surface de 200 m².



Dans cette question, on suppose que la surface occupée par les nénuphars augmente de 40 m² chaque semaine, depuis la date de l'anniversaire, tant que cela est possible.

- 1. Quelle sera la surface occupée par les nénuphars 10 semaines après l'anniversaire ?
- 2. Est-il possible qu'un dimanche, la surface occupée par les nénuphars soit égale à 580 m²? Justifier.
- 3. Au bout de combien de semaines, l'étang sera-t-il entièrement recouvert de nénuphars ?

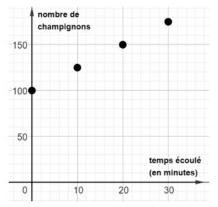
Exercice 12

On étudie la croissance d'une population de champignons.

Au début de l'expérience, on dispose de 100 champignons. Toutes les dix minutes, on mesure l'évolution de leur nombre.

On obtient les résultats suivants.

Temps écoulé (en minutes)	Nombre de champignons
0	100
10	125
20	150
30	175



Soit n un entier naturel. On note u_n le nombre de champignons après n périodes de dix minutes. Ainsi $u_0 = 100$, $u_1 = 125$, $u_2 = 150$...

- 1. Justifier que les termes u_0 , u_1 , u_2 , u_3 sont en progression arithmétique.
- 2. En supposant que la population de champignons continue d'évoluer selon le même rythme, montrer qu'elle aura quadruplé deux heures après le début de l'expérience.