Variations globales – Exercices – Devoirs

Exercice 1

Dans chacune des questions suivantes, f est une fonction qui admet un nombre dérivé f'(x) pour tout nombre réel x.

Si $f(x) = -3$, alors:	f'(x) = 3	f'(x) = 0	f'(x) = -3
Si $f(x) = 3x - 2$, alors:	f'(x) = 3 - 2	f '(x) = 1	f'(x) = 3
Si $f(x) = x^2 + 2x + 3$, alors :	f'(x) = 2x + 3	f'(x) = 2x + 5	f'(x) = 2x + 2
Si $f(x) = 3x^2 - 4x + 1$, alors :	f'(x) = 3x - 4	f'(x) = 6x - 3	f'(x) = 6x - 4

Exercice 2

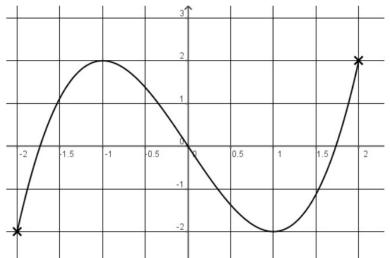
Déterminer l'expression des fonctions dérivées

1.
$$f(x) = -2x^2 - x$$

3.
$$f(x)=x^2+2x+3$$

2.
$$f(x)=25$$

$$4. \quad f(x) = x^3$$


Exercice 3

On considère la fonction f définie sur \mathbb{R} par $f(x)=x^3-3x-3$ On note C_f sa représentation graphique.

- 1. Calculer la dérivée f' de f.
- 2. Dresser le tableau de variation de f.
- 3. Déterminer une équation de la tangente T à C_f au point d'abscisse 0.
- 4. Tracer T et Cf dans le même repère.

Exercice 4

On considère la fonction f définie sur [- 2 ; 2] par la courbe donnée ci-dessous.

- Dresser le tableau de variation de f.
- 3. En déduire le signe de f'(x) en fonction de x.
- 4. Déterminer un intervalle où : f(x) > 0 et f'(x) < 0.
- 5. Déterminer un intervalle où : f(x) < 0 et f'(x) < 0.

Exercice 5

Dresser le tableau de variation des fonctions suivantes :

$$f(x) = 2x^2 + 4x - 3$$

$$f(x) = 2x^2 + 4x - 3$$
 $f(x) = 2x^3 + 3x^2 - 36x + 4$

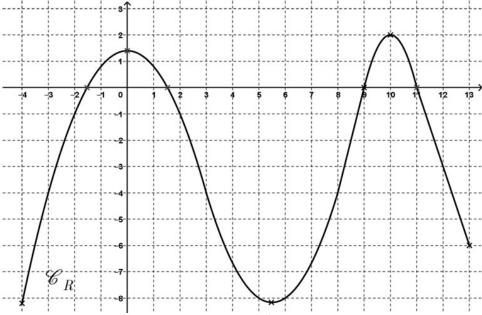
$$f(x) = -x^3 + 6x^2 - 1$$

Exercice 6

Pour chacune des fonctions suivantes, déterminer l'expression de sa fonction dérivée.

a.
$$f(x) = -3x + 7$$

d.
$$k(x) = \frac{4}{3}x^3 + \frac{1}{7}x + \frac{4}{9}$$


b.
$$g(x) = 2x^2 - 5x + 3$$

e.
$$b(q) = 5,2q + \sqrt{3} - 5q^2$$

c.
$$h(x) = -2x^3 + 4x^2 + x - 1,5$$

Exercice 7

On considère la fonction f(x) définie et dérivable sur [-4 ; 13] et dont on donne une représentation graphique :

- 1. Etablir le tableau de variations de f(x) sur [-4; 13]
- 2. En déduire le tableau de signes de f(x), fonction dérivée de R, sur [-4 ; 13]

Exercice 8

On considère la fonction f(x) définie et dérivable sur \mathbb{R} par : $f(x)=x^3+3x^2-24x+18$

- 1. Justifier que pour tout réel x, f'(x)=3(x+4)(x-2)
- 2a. Etablir le tableau de signes de f'(x) sur \mathbb{R} .
- 2b.En déduire le tableau de variations de f(x) sur \mathbb{R} .

Exercice 9

On considère la fonction C(x) définie et dérivable sur \mathbb{R} par :

$$C(x) = -\frac{2}{3}x^3 - \frac{5}{2}x^2 + 3x - 1$$

- 1. Justifier que pour tout réel x C'(x)=(x+3)(1-2x)
- 2a. Etablir le tableau de signes de C'(x) sur \mathbb{R} .
- 2b. En déduire le tableau de variations de C(x) sur \mathbb{R} .