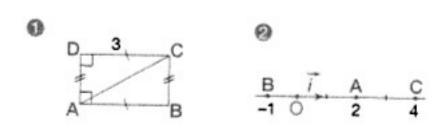
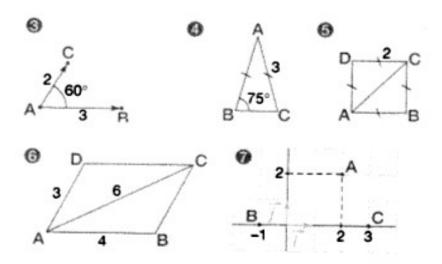
# **Produit scalaire – Exercices – Devoirs**

#### Exercice 1 corrigé disponible

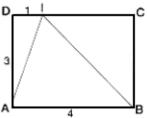
Pour chacune des figures suivantes, calculer :  $\overrightarrow{AB} \cdot \overrightarrow{AC}$ 





#### Exercice 2 corrigé disponible

ABCD est un rectangle, I est un point de [CD] défini comme l'indique la figure ci-dessous.



1. Démontrer que :  $(\overrightarrow{ID} + \overrightarrow{DA}) \cdot (\overrightarrow{IC} + \overrightarrow{CB}) = \overrightarrow{ID} \cdot \overrightarrow{IC} + DA^2$ 

2. En déduire que :  $\overrightarrow{IA} \cdot \overrightarrow{IB} = 6$  et  $\cos \widehat{AIB} = \frac{1}{\sqrt{5}}$ 

### Exercice 3 corrigé disponible

Répondre par VRAI (V) ou FAUX (F) :

#### Question 1

Soient A, B et C trois points distincts du plan.

a) A, B et C sont alignés si et seulement si :  $\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AC$ 

b) (AB) et (AC) sont orthogonales si et seulement si  $\overline{AB} \cdot \overline{AC} = 0$ 

c) A est le milieu de [BC] si et seulement si :  $\overline{AB} \cdot \overline{AC} = -AB^2$ 

#### Question 2

Soit ABC un triangle équilatéral de centre O et de côté 2.

a) 
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = -2$$

b) 
$$\overrightarrow{CA} \cdot \overrightarrow{OB} = -2$$

c) 
$$\overrightarrow{CA} \cdot \overrightarrow{CB} = \overrightarrow{CA} \cdot \overrightarrow{CO}$$

#### **Question 3**

Soient  $\vec{u}$  et  $\vec{v}$  deux vecteurs tels que :  $\vec{u}^2 = \vec{v}^2$ , alors :

a) 
$$\vec{u} = \vec{v}$$
 ou  $\vec{u} = -\vec{v}$ 

$$b) \|\vec{u}\| = \|\vec{v}\|$$

c) 
$$\vec{u} + \vec{v}$$
 et  $\vec{u} - \vec{v}$  sont orthogonaux

#### Question

Soient  $\vec{u}$ ,  $\vec{v}$  et  $\vec{w}$  trois vecteurs tels que :  $\vec{u}$ . $\vec{v} = \vec{u}$ . $\vec{w}$ , alors :

a) 
$$\vec{v} = \vec{w}$$

b) 
$$\vec{u} = \vec{0}$$

c) 
$$\vec{u}$$
 et  $\vec{v} - \vec{w}$  sont orthogonaux

#### Question 5

Soient  $\vec{u}$  et  $\vec{v}$  deux vecteurs tels que :  $\vec{u}.\vec{v} = -3$   $||\vec{u}|| = \sqrt{6}$  et  $||\vec{v}|| = \sqrt{2}$ , alors :

a) 
$$(\vec{u}; \vec{v}) = \frac{2\pi}{3}$$

b) 
$$\|\vec{u} + \vec{v}\| = \sqrt{2}$$

$$c) \|\vec{u} - \vec{v}\| = \sqrt{14}$$

## Exercice 4 corrigé disponible

A, B et C sont trois points tels que AB=5 , AC=8

1. Est-il possible d'avoir  $\overrightarrow{AB} \cdot \overrightarrow{AC} = 60$  ?

On prend maintenant  $\overrightarrow{AB} \cdot \overrightarrow{AC} = 20$ 

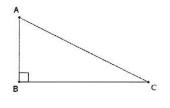
- 2. Quelle est la valeur de  $\widehat{BAC}$  ?
- 3. Calculer BC
- 4. Calculer les produits scalaires  $\overrightarrow{BA} \cdot \overrightarrow{BC}$  et  $\overrightarrow{CA} \cdot \overrightarrow{CB}$
- 5. Quelle est l'aire du triangle ABC?

## Exercice 5 corrigé disponible

Dans chaque cas, calculer  $\overrightarrow{AB}.\overrightarrow{AC}$ :

- 1. ABC est un triangle tel que AB = 6cm, AC = 4cm et BC = 7cm.
- 2. A(2;4), B(-1;3) et C(1;-2) dans un repère orthonormé.
- 3.  $AB = 6 \text{cm}, AC = 5 \text{cm et } \widehat{BAC} = \frac{2\pi}{3} \text{ radians.}$
- $4.\ AB=6cm$

5. AB = 2AC = 6cm





#### **Exercice 6**

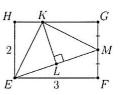
Dans le plan muni d'un repère orthonormé (unité le cm), on donne A(2;1), B(-1;-3) et C(-3;0).

- 1. Faire une figure.
- 2. Calculer  $\overrightarrow{AB}.\overrightarrow{AC}$ .
- 3. Déterminer la mesure arrondie au dixième de degré de l'angle  $\widehat{BAC}$ .
- 4. On note H le pied de la hauteur issue de B dans ABC. Calculer la valeur exacte de AH, puis arrondie au mm près.

#### Exercice 7 corrigé disponible

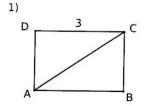
EFGH est un rectangle avec EH=2 et EF=3. M est le milieu de [FG], et K est défini par  $\overrightarrow{HK}=\frac{1}{3}\overrightarrow{HG}$ ; L est le projeté orthogonal de K sur (EM).

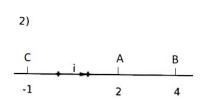
- 1. Montrer que  $\overrightarrow{EK}.\overrightarrow{EM} = 5$  (décomposer chaque vecteur par la relation de Chasles).
- 2. En écrivant le produit scalaire  $\overrightarrow{EK}.\overrightarrow{EM}$  de deux manières différentes, déterminer :
  - (a) la longueur EL
  - (b) une mesure de l'angle  $\widehat{KEM}$  en radians

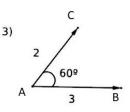


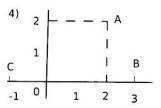
#### Exercice 8 corrigé disponible

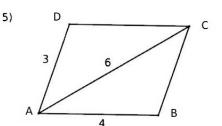
Calculer  $\overrightarrow{AB}.\overrightarrow{AC}$  dans chacun des 5 cas suivants :











## Exercice 9 corrigé disponible

Soient A, B et C trois points distincts tels que AB = 6. Déterminer l'ensemble des points M vérifiant les équations suivantes et les représenter sur la figure ci-dessous.

- 1.  $CM \cdot AB = 0$
- 2.  $AM \cdot BM = 0$
- 3.  $\overrightarrow{AM} \cdot \overrightarrow{AB} = -5$
- 4.  $\overrightarrow{CM} \cdot \overrightarrow{AB} = -5$

C



## Exercice 10 corrigé disponible

Sur la figure ci-contre, on a tracé deux cercles de centre O et de rayons respectifs 2 et 3.

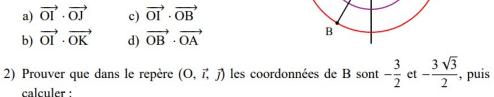
1) Calculer les produits scalaires suivants :

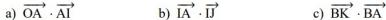


c) 
$$\overrightarrow{OI} \cdot \overrightarrow{OB}$$

b) 
$$\overrightarrow{OI} \cdot \overrightarrow{OK}$$

d) 
$$\overrightarrow{OB} \cdot \overrightarrow{OA}$$





b) 
$$\overrightarrow{IA} \cdot \overrightarrow{IJ}$$

c) 
$$\overrightarrow{BK} \cdot \overrightarrow{BA}$$

#### Exercice 11 corrigé disponible

ABCD est un parallélogramme de centre O avec AB = 15, BC = 13 et AC = 14.

Déterminer la longueur BD.

#### Exercice 12 corrigé disponible

- A, B et C sont trois points tels que AB = 5, AC = 8, et  $\overrightarrow{AB.AC} = 20$
- a) Faire une figure que l'on complétera par la suite.
- b) Quelle est la valeur de  $B\hat{A}C$ ?
- c) En écrivant  $\overrightarrow{BC} = \overrightarrow{AC} \overrightarrow{AB}$  puis en élevant au carré, calculez BC.
- d) Déterminer l'ensemble  $\mathcal{D}$  des points M du plan tels que  $\overrightarrow{AM}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AC}$ .
- e) Soit I le milieu de [BC]. Montrer que, pour tout point M du plan,  $\overrightarrow{MB}.\overrightarrow{MC} = MI^2 \frac{BC^2}{A}$ .
- f) En déduire l'ensemble  $\mathscr{C}$  des points M du plan tels que  $\overline{MB.MC} = 20$

#### Exercice 13 corrigé disponible

Soit ABC un triangle AB = c; AC = b et BC = a.

Connaissant certaines indications sur le triangle, déterminer d'autres éléments du triangle:

a. 
$$\hat{A} = \frac{\pi}{4}$$
;  $\hat{B} = \frac{\pi}{3}$  et  $a = 1$ ; calculer  $b$ .

b. 
$$\hat{A} = \frac{3\pi}{4}$$
;  $b = 1$  et  $c = 2$ ; calculer  $a$ .

#### Exercice 14 corrigé disponible

Soit ABC un triangle et I le milieu de [BC] tel que BI=CI=2

AI=3 et 
$$\widehat{AIB} = \frac{\pi}{3}$$
. Calculer  $AB^2 + AC^2$  et  $AB^2 - AC^2$ 

En déduire AB et AC

### **Exercice 15** corrigé disponible

Soit ABC un triangle AB = c; AC = b et BC = a.

Connaissant certaines indications sur le triangle, déterminer d'autres éléments du triangle :

a. 
$$\hat{A} = \frac{\pi}{6}$$
;  $\hat{B} = \frac{\pi}{6}$  et  $a = 1$ ; calculer  $b$  et  $c$ .

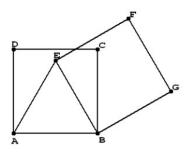
b. 
$$\hat{A} = \frac{2\pi}{3}$$
;  $b = 1$  et  $c = 2$ ; calculer  $a$  et  $\cos \hat{B}$ .

c. 
$$\hat{A} = \frac{\pi}{3}$$
;  $a = \sqrt{3}$  et  $b = 1$ ; calculer l'aire du triangle.

## Exercice 16 corrigé disponible

On considère un triangle équilatéral *AEB* de côté 1 et deux carrés *ABCD* et *BGFE* comme sur la figure ci-contre.

- 1) Calculer  $\overrightarrow{BC}$ .  $\overrightarrow{BE}$  et en déduire  $\overrightarrow{DA}$ .  $\overrightarrow{BE}$ .
- 2) Calculer  $\overrightarrow{EA}$ .  $\overrightarrow{EB}$ .
- 3) Démontrer que BCG est un triangle équilatéral.
- 4) En déduire  $\overrightarrow{BC}$ .  $\overrightarrow{BG}$  puis  $\overrightarrow{DA}$ .  $\overrightarrow{EF}$ .
- 5) Calculer  $\overrightarrow{AE}$ .  $\overrightarrow{EF}$ .
- 6) En utilisant tout ce qui précède, calculer  $\overrightarrow{DE}$ .  $\overrightarrow{BF}$ .
- 7) En déduire que les points D, E et G sont alignés.



## Exercice 17 corrigé disponible

On considère le triangle ABC tel que AB = 2,  $AC = 3\sqrt{2} - \sqrt{6}$  et  $BC = 2(\sqrt{3} - 1)$ .

- 1) Calculer  $\overrightarrow{AB}$ .  $\overrightarrow{AC}$  ainsi que  $\overrightarrow{BA}$ .  $\overrightarrow{BC}$ .
- 2) En déduire les trois angles du triangle ABC.

#### **Exercice 18** corrigé disponible

On considère un trapèze ABCD rectangle en A et D tel que AB=5, CD=3 et AD=4.

On note O le milieu de [AD].

Calculer:

 $\overrightarrow{AB}.\overrightarrow{CD}$   $\overrightarrow{AC}.\overrightarrow{AD}$   $\overrightarrow{BD}.\overrightarrow{AC}$   $\overrightarrow{AB}.\overrightarrow{AC}$   $\overrightarrow{OB}.\overrightarrow{OC}$ 

