Evolution système chimique – Exercices - Devoirs

Exercice 1 corrigé disponible

- ◆ Les ocres du Roussillon sont des composées, entre autres, de silice, d'argile et d'un pigment minéral coloré : l'oxyde de fer III de formule Fe₂O₃. Ce solide peut être obtenu en faisant réagir à chaud du métal fer avec du dioxygène selon l'équation : 4 Fe (s) + 3 O₂ (g) → 2 Fe₂O₃ (s). On fait réagir 50,2 g de fer avec 0,900 moles de dioxygène. Données : M(Fe) = 55,8 g.mol⁻¹; M(O) = 16,0 g.mol⁻¹

équation de la réaction		4 Fe (s)	+	-	3 O _{2 (g)}	→	2 Fe ₂ O _{3 (s)}	
État du système	Avancement		Quantité de matière (en mol)					
État initial	x = 0							
en cours	$0 \le x \le x_{\text{max}}$							
État final	x_{max}							

2) Déterminer l'avancement maximal x_{max} et en déduire le réactif limitant.

3) Quelle masse d'oxyde de fer III obtient-on en fin de réaction?

4) Sachant que, dans les conditions de l'expérience, une mole de gaz occupe un volume de 22,4 L, calculer le volume de dioxygène consommé lors de l'expérience?

Exercice 2 corrigé disponible

- L'hydroxyde d'aluminium Al(OH)₃ est un solide blanc qui peut être obtenu par une réaction de précipitation entre les ions aluminium Al³⁺ et les ions hydroxyde HO⁻.
- 1) Compléter l'équation bilan : $Al^{3+}_{(aq)} + \dots HO^{-}_{(aq)} \rightarrow \dots Al(OH)_{3 (s)}$
- ◆ Le graphe ci-contre montre l'évolution des quantités de matière de ces ions en fonction de l'avancement x de la réaction.

 Ouantité de

2) Identifier les droites d'évolution n(Al³+) et n(HO¹). Justifier.

mati	ère (m	ol)		
4,0				
2,0				
			Ľ.	
0,0		\	10	
	U	0,5	1,0	avancen

 Déterminer les quantités de matière des réactifs à l'état initial.

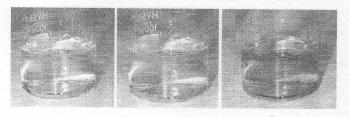
4) Déterminer l'avancement maximal :

5) Déterminer le réactif limitant :

6) Tracer sur le graphe ci-contre l'évolution de la quantité de matière de Al(OH)₃ en fonction de l'avancement.

7) Déterminer les quantités de matière à l'état final.

Exercice 3 corrigé disponible


Les ions iodure $\Gamma(aq)$ réagissent lentement avec les ions peroxodisulfate $S_2O_8^{2-}(aq)$ pour former du diiode $I_2(aq)$ et des ions sulfate $SO_4^{2-}(aq)$ selon l'équation:

$$2I_{(aq)}^- + S_2 O_{8(aq)}^{2-} \rightarrow I_{2(aq)} + 2SO_{4(aq)}^{2-}$$

On verse, dans un bécher, un volume V_1 =50,0 mL de solution incolore de peroxodisulfate de potassium de concentration C_1 =0,100 $mol.L^{-1}$. On ajoute un volume V_2 =50,0 mL de solution incolore d'iodure de potassium de concentration C_2 =0,500 $mol.L^{-1}$.

Le diiode en solution de formule l₂(aq) est la seule espèce colorée du système chimique.

La photographie ci-dessous montre la coloration du système chimique au cours du temps :

- 1. Qu'est ce qui prouve qu'il y a eu une transformation chimique ?
- 2. Calculer les quantités initiales des réactifs que l'on notera $n_i(l^2)$ et $n_i(S_2O_8^2)$.
- 3. Déterminer le réactif limitant.
- 4. Déterminer la quantité de matière de diiode dans l'état final. En déduire sa concentration.
- 5. Quelle quantité de matière d'ions peroxodisulfate aurait t-on dû introduire afin d'être dans les proportions stœchiométriques de l'équation ?

Équation de la ré	action		
État du système	Avancement		
Initial	x ₀ = 0		
En cours	х		
Final	X _{max}		

Exercice 4 corrigé disponible

Partie A : la réaction chimique

Les ions permanganate de formule MnO_4^- réagissent avec l'acide oxalique de formule $H_2C_2O_4$ suivant l'équation suivante :

$$2MnO_4^- + 5H_2C_2O_4 + 6H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

Les ions permanganates MnO₄⁻ colorent la solution en violet / rose. Toutes les autres espèces en solution sont incolores. Le volume molaire dans les conditions de l'expérience vaut 24,0 L.mol⁻¹.

Pour que la réaction ait lieu, le milieu réactionnel doit être acidifié par ajout d'acide sulfurique en excès : les ions H⁺ dans l'équation représentent cet ajout mais ne sont pas à considérer comme un réactif.

On mélange initialement un volume $V_A = 50.0$ mL d'acide oxalique à la concentration $C_A = 2.0 \times 10^{-2}$ mol. L^{-1} avec un volume $V_B = 20.0$ mL de permanganate de potassium à la concentration $C_B = 5.0.10^{-2}$ mol. L^{-1} .

- 1. Calcule les quantités initiales de réactifs $(n_A)_0$ et $(n_B)_0$.
- 2. Etablis le tableau d'avancement de la réaction en faisant apparaître l'état initial et l'état final.
- 3. Détermine quel est le réactif limitant et quelle est la valeur de l'avancement maximal x_{max} .
- 4. Le mélange initial était-il stœchiométrique ? Justifie.
- 5. Quel volume de dioxyde de carbone la réaction a-t-elle produit ? Justifie.
- En fin de réaction, quelle quantité d'ions permanganate n $(MnO_4^-)_f$ reste-t-il en solution ?
- 7. Détermine le volume total de la solution et déduis-en la concentration finale $[MnO_4^-]_f$ des ions permanganate.

Exercice 5 corrigé disponible

L'indigo, de formule brute $C_{16}H_{10}N_2O_2$, peut-être synthétisé à partir de 2-nitrobenzaldéhyde $C_7H_5O_3N_{(s)}$, d'acétone $C_3H_6O_{(l)}$ et d'ions hydroxyde $HO^{-}_{(aq)}$ selon la réaction d'équation indiquée dans le tableau d'avancement fourni EN ANNEXE. La synthèse est réalisée avec une masse m=1,00 g de 2-nitrobenzaldéhyde solide, un volume V=10,0 mL d'acétone et un volume $V_s=5,0$ mL d'une solution aqueuse contenant des ions hydroxyde de concentration $C_s=2,0$ mol. L^{-1} .

<u>Données</u>: • Masses molaires atomiques (en g. mol⁻¹): H:1,0; C:12,0; N:14,0; O:16,0

- Masse molaire de l'indigo : M(indigo) = 262,0 g . mol⁻¹
- Masse volumique de l'acétone : $\rho(C_3H_6O) = 1,05 \text{ g} \cdot \text{mL}^{-1}$.
- 1) Calculer la masse molaire du 2-nitrobenzaldéhyde et celle de l'acétone.
- 2) a) Calculer les quantités de matière initiales de 2-nitrobenzaldéhyde et d'ions hydroxyde.
 - b) Montrer que la quantité de matière initiale d'acétone est égale à 0,181 mol.
- 3) Compléter <u>littéralement</u> le tableau d'avancement de la transformation EN ANNEXE. Pour la suite de cette partie, on considère que la réaction est complète (rendement de 100 %).
- 4) Déterminer l'avancement maximal. En déduire le réactif limitant.
- 5) a) Quelles sont les quantités de matière restantes de réactifs à l'état final?
 - b) Quelle quantité maximale de matière d'indigo obtiendrait-on?
 - c) Montrer que la masse correspondante d'indigo est de 0,867g.

Équation de	la réaction	$2 C_7 H_5 O_3 N_{(s)} + 2 C_3 H_6 O_{(l)} + 2 HO^{\bullet}_{(aq)} \rightarrow C_{16} H_{10} N_2 O_{2 (s)} + 2 C_2 H_3 O_2^{\bullet}_{(aq)} + 4 H_2 O_{(l)} $ (indigo)								
Etat du système	Avancement		l)	Kapana.						
Initial	x = 0		enge some	celugaçik desi	yenkala abelah	ua este se a repre	73 . J			
Intermédiaire	X		: 14399 (1914)		grafikati dalah da Jerrikati	n gerngaan sa				
Final	Xmax				n amegadikçelir. Navçe ülk tereler Navisor'i ece ine					

Exercice 6

Une solution incolore de sulfate de fer II est mélangée à une solution violette de permanganate de potassium en milieu acide. La seule espèce colorée du système étudié est l'ion permanganate, MnO₄ (aq), de couleur violette. Il se produit alors la réaction chimique suivante :

$$5 \text{ Fe}^{2+}(aq) + \text{MnO}_4(aq) + 8 \text{ H}^+(aq) \rightarrow \text{Mn}^{2+}(aq) + 5 \text{ Fe}^{3+}(aq) + 4 \text{ H}_2\text{O}(1)$$

On mélange initialement un volume V_1 = 100,0 mL de solution de sulfate de fer II de concentration c_1 = 2,5.10⁻² mol.L⁻¹ avec un volume V_2 = 5,0 mL de la solution acidifiée de permanganate de potassium de concentration c_2 = 5,0.10⁻² mol.L⁻¹.

L'acide est en excès et l'eau constitue le solvant de la solution.

- **1.** Calculer les quantités initiales des réactifs n_1 et n_2 , respectivement des ions fer II (Fe²⁺(aq)) et des ions permanganate (MnO₄ (aq)).
- 2. Compléter le tableau d'avancement de la réaction :

Équation chimique				74.5	
État du système	Avancement				
État initial	0				
État intermédiaire	х				
État final	x _{max} =		~ ~ / / * * * *		

- **3.** Déterminer quelle est la valeur de l'avancement maximal x_{max} et quel est le réactif limitant.
- 4. Le mélange initial était-il stœchiométrique ? Justifier.
- /0,75

/2.5

/1,5

/0.75

/0,5

- 5. Quelle est la couleur du mélange final ? Justifier.
- **6.** En fin de réaction, quelle quantité d'ions permanganate $n(MnO_4)_f$ reste-t-il en solution ?
- **7.** Déterminer le volume total de la solution et en déduire la concentration finale $[MnO_4]_f$ des ions permanganate.

Exercice 7

- **Données**: M(Fe) = 55,8 g.mol⁻¹; M(O) = 16,0 g.mol⁻¹; M(A ℓ) = 27,0 g.mol⁻¹
- L'aluminothermie est un procédé qui utilise la réaction entre l'oxyde de fer Fe₂O₃ et l'aluminium Al pour former du fer Fe et de l'oxyde de l'aluminium Al₂O₃. Ce procédé permet, par exemple, de souder des rails.
- L'équation équilibrée de la réaction est : $Fe_2O_{3(s)} + 2 A\ell_{(s)} \longrightarrow A\ell_2O_{3(s)} + 2 Fe_{(s)}$
- On fait réagir selon ce procédé une masse m₁ = 798 g d'oxyde de fer avec une masse m₂ = 270 g d'aluminium métallique.
- Pour que la soudure des rails soit correcte, le mélange réactionnel doit être dans les proportions stœchiométriques. Le but de l'exercice est de vérifier si cela est le cas.
- 1) Calculer la masse molaire M(Fe₂O₃) de l'oxyde de fer Fe₂O₃.
 - 2) Calculer les quantités de matière n₁ d'oxyde de fer Fe₂O₃ et n₂ d'aluminium.
 - 3) Compléter le tableau d'avancement suivant :

équation-bilan		Fe ₂ O _{3 (s)}	+ 2	Al (s)	-	\rightarrow	$A\ell_2O_3$ (s)	+	2 Fe (s)
Etat initial	x = 0	n_1		n_2					
en cours	x								
Etat final	$x = x_{\text{max}}$								

⁴⁾ Déterminer l'avancement maximal x_{max} . Détailler votre raisonnement.

- 5) Le mélange est-il stœchiométrique ? Justifier rapidement.
- 6) Calculer la masse $m(A\ell_2O_3)$ d'alumine formée. Détailler votre raisonnement.