Généralités des suites - Exercices - Devoirs

Exercice 1 corrigé disponible

Compléter les suites "logiques" suivantes.

Donner, si possible, le 10ième nombre de la suite, puis le 20ième.

Exercice 2 corrigé disponible

Soit la suite (u_n) définie par $u_n = \frac{1}{2}n+1$.

- 1. Calculer u₀, u₁, u₂, u₃, u₁₀, u₁₀₀ et u₁₀₀₀.
- 2. Représenter graphiquement les 10 premières valeurs de $u_n = f(n)$.

Exercice 3 corrigé disponible

1. Qu'affiche le programme suivant?
def u(n):
 return 3*n-2

print(u(2))
n=10
print(u(n))

2. Modifier le programme précédent pour qu'il calcule les termes de la suite (u_n) définie par l'expression :

$$u_n = \frac{2n^2 - 1}{n^2 + 2}$$

Afficher les termes u_{10} , u_{100} et u_{1000}

Qu'observe-t-on pour des valeurs de plus en plus grandes de n?

Exercice 4 corrigé disponible

On considère la suite u_n définie pour tout entier naturel n par :

$$u_n = 4n - 12$$

- 1. Déterminer les 6 premiers termes de la suite u_n ; quelle conjecture peuton réaliser?
- 2. Quel est le sens de variation de u_n ? Retrouver le résultat de la question 1.

Exercice 5 corrigé disponible

Soit la suite (u_n) définie par $u_0 = 2$ et, pour tout entier naturel n,

$$u_{n+1} = 3u_n - 1$$

- 1. Définir une fonction Python permettant de retourner (u_n)
- 2. Calculer u_1 , u_2 et u_3 , puis u_{10} , et u_{20} .

Exercice 6 corrigé disponible

La suite (u_n) est définie, pour tout entier naturel n, par $u_n = 7n - 3$.

- 1. Ouelle est la nature de la définition de cette suite ?
- 2. Calculer les 4 premiers termes de cette suite u₀, u₁, u₂, u₃

Ouel semble être son sens de variation?

- 3. (a) Montrer que $u_{n+1} = 7n + 4$
- 3. (b) Étudier le signe de u_{n+1} – u_n
- 3. (c) Que peut-on en conclure?

Exercice 7 corrigé disponible

La suite (v_n) est définie par $v_0 = 0$ et, pour tout entier naturel n,

$$v_{n+1} = \frac{1}{1+v_n} .$$

- 1. Ouelle est la nature de la définition de cette suite ?
- 2. Calculer les termes suivants : v₁, v₂, v₃, v₄, v₅
- 3. Que peut-on en conclure pour le sens de variation de la suite (v_n) ?

Exercice 8 corrigé disponible

En 2020, le chiffre d'affaires d'un restaurant gastronomique était de 300 000 €.

On modélise le chiffre d'affaires de ce restaurant (exprimé en milliers d'euros) pendant l'année 2020 +n par le n-ième terme u_n, de la suite (u_n) définie par : $u_0 = 300$ et $u_{n+1} = 1,2 \times u_n - 50$

- 1. Montrer que, selon ce modèle, le chiffre d'affaires du restaurant était de 310 000 € en 2021
- 2. Calculer u₂ et interpréter le résultat obtenu

Exercice 9

Calculer les cinq premiers termes des suites suivantes :

- 1. La suite (u_n) définie pour tout $n \in \mathbb{N}$ par : $u_n = 2n^2 + n 3$
- 2. La suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par : $u_n = \frac{1}{n}$
- 3. La suite (u_n) définie pour tout $n \in \mathbb{N}$ par : $\begin{cases} u_0 = -1 \\ u_{n+1} = 2u_n 3 \end{cases}$
- 4. La suite (u_n) définie pour tout $n \in \mathbb{N}$ par : $\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n + 2}{u_n 1} \end{cases}$

Exercice 10

Indiquer la réponse correcte

- 1. Soit (u_n) une suite définie par $u_n = 5n 2$. La valeur de u_8 est :
 - a. -2
- b. 38

- c. 42
- 2. Soit (u_n) la suite définie par $u_n = n^2 3n + 1$. La valeur de u_{n+1} est :
 - a. $n^2 n 1$ b. $n^2 n + 1$ c. $n^2 n 5$
- 3. Soit (t_n) une suite définie par $t_1 = 1$ et $t_{n+1} = \frac{t_n}{n}$; la valeur de t_3 est :

 - a. 1 b. $\frac{1}{2}$ c. $\frac{1}{6}$
- 4. Soit (u_n) la suite définie par $u_n = -3n + 2$. Alors les points représentant les termes de la suite dans un repère du plan
 - a. sont alignés.
 - b. appartiennent à une parabole.
 - c. appartiennent à une hyperbole

Exercice 11

Soit (v_n) la suite définie par $v_n = 3n^2 - 2$. Montrer que la suite est croissante.

Exercice 12

On considère la suite (w_n) définie sur N par $w_0 = 4$ et $w_{n+1} = -w_n + 1$ Combien vaut w_{20} ?

Exercice 13

Les suites (u_n) , (v_n) et (w_n) sont définies pour tout entier naturel n, par :

$$u_n = 1 - 3n$$
; $v_0 = \frac{4}{9} et v_{n+1} = \frac{3v_n}{2}$;

Compléter le tableau suivant :

n	0	1	2	3	4
u_n					
v_n					
w_n			- 1		C. Jeji