Fonctions de référence – Exercices – Devoirs

Exercice 1 corrigé disponible

Soit f la fonction carrée définie pour tout réel x par $f(x)=x^2$ et C_f sa courbe représentative dans un repère orthonormal du plan.

- 1. Représenter C_f pour $x \in [-4, 4]$
- 2. Résoudre graphiquement puis par le calcul les équations et inéquations suivantes :

-
$$f(x)=5$$
 - $f(x)=-10$ - $f(x)=0$
- $f(x) \ge -1$ - $f(x) < 0$ - $f(x) < 7$

3. Donner un encadrement de f(x) dans les cas suivants :

$$-x \in]-\infty; -1]$$
 $-x \in]2; 4]$ $-x \in]-2; 3]$

- 4. On donne f(3)=9 ; écrire une phase équivalente avec le terme suivant : a. antécédent b. équation c. image
- 5. Déterminer l'équation de la droite *d* passant par les points

$$A(1;1)$$
 et $B(-2;4)$; on notera $h(x)$ la fonction associée

- 6. Résoudre graphiquement f(x)=h(x)
- 7. Démontrer que f(x)-h(x)=(x-1)(x+2)
- 8. En utilisant la question précédente étudier la position relative de C_f et d selon les valeurs de x.

Exercice 2 corrigé disponible

On appelle f la fonction définie sur \mathbb{R} par $f(x)=x^2+4x-5$

- 1. Calculer l'image de 0 et de -2 par f.
- 2. Déterminer le ou les antécédents éventuels de -5.
- 3. Montrer que l'on a $f(x)=(x+2)^2-9$; en déduire une factorisation de f(x).
- 4. Résoudre dans \mathbb{R} l'équation f(x)=0
- 5. Montrer que $f(x_2)-f(x_1)=(x_2-x_1)(x_2+x_1+4)$. En déduire que f est croissante sur $[-2;+\infty[$ et décroissante sur $]-\infty;-2]$. Construire le tableau de variation et précisez le minimum.

Exercice 3 corrigé disponible

Soit x un nombre réel

- 1. L'affirmation si $x^2 \ge 9$ alors $x \ge 3$ est-elle vraie?
- 2. Ecrire une proposition équivalente à $x^2 \ge 9$

Exercice 4 corrigé disponible

- 1. Résoudre dans \mathbb{R} l'équation $(x-3)^2=25$
- 2. Résoudre dans \mathbb{R} l'inéquation $(1-2x)^2 \ge 9$

Exercice 5 corrigé disponible

1. Résoudre les équations suivantes :

a.
$$x^2-4-(x+2)(3x-1)=0$$

b.
$$(x-2)^2 - (3x-1)^2 = 0$$

c.
$$x^2-16=(x-4)^2(x+5)$$

2. Résoudre les inéquations suivantes :

a.
$$x^2 < 5x$$

b.
$$x^2 > 49$$

Exercice 6 corrigé disponible

Pour chaque cas, donner un encadrement de x^2 :

1.
$$-2 < x \le 7$$

3.
$$-6 \le x < 3$$

4.
$$x < -2$$

Exercice 7 corrigé disponible

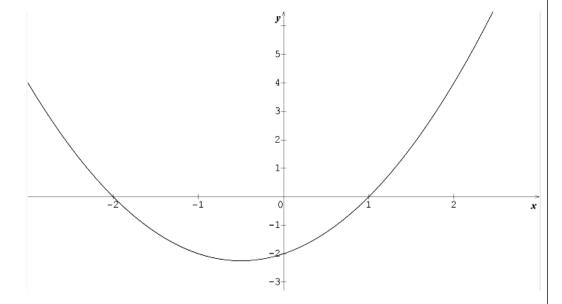
Soit *f* la fonction définie sur [-3;3] par $f(x)=x^2+x-2$

On donne sa représentation graphique dans un repère orthogonal

- 1. Résoudre graphiquement les équations et inéquations suivantes :
 - a. f(x) = 0
- b. f(x) = -2
- c. $f(x) \leq 0$
- 2. Tracer dans le même repère la droite représentant la fonction g définie sur [-2;1] par g(x)=-x+1.

En déduire les solutions de l'équation : f(x) = -x + 1

- 3. Déterminer par le calcul les antécédents de -2 par f(x)
- 4. a. Vérifier que l'on a pour tout x $f(x) = \left(x + \frac{1}{2}\right)^2 \frac{9}{4}$
 - b. En déduire la résolution par le calcul de l'équation f(x)=0
 - c. Résoudre par le calcul l'inéquation $f(x) \le 0$



Exercice 8 corrigé disponible

Soit la fonction définie par $f(x) = \sqrt{x}$

- 1. Quel est le domaine de définition de f(x) ?
- 2. Démontrer le sens de variation de la fonction racine carrée.
- 3. Comparer f(3) et $f(\pi)$; justifier

Soit les fonctions $h(x) = \sqrt{(x+1)}$ $k(x) = \sqrt{(x)} + 1$ $\forall x \in [0; +\infty[$

- 4. Comparer h(x) et k(x); justifier.
- 5. Démontrer que $\sqrt{2}$ est un nombre irrationnel.
- 6. Indiquer la (les) réponse(s) correcte(s) en justifiant :
 - a. $\forall n \in \mathbb{N} \quad \sqrt{n+1} \sqrt{n} \ge 1$
 - b. $\sqrt{3} \sqrt{2} < 1$
 - c. $\forall n \in \mathbb{N} \quad \sqrt{n+1} + \sqrt{n} \ge 1$
- 7. Calculer les expressions suivantes et donner le résultat sous la forme $a\sqrt{b}$ avec $a \in \mathbb{Z}$ $b \in \mathbb{N}$ b étant le plus petit possible :

$$A = -5\sqrt{28} + 5\sqrt{63} - \sqrt{112}$$

$$B = \sqrt{160} \times \sqrt{40} \times \sqrt{90}$$

8. Calculer les expressions suivantes et donner le résultat sous la forme $a+b\sqrt{c}$ avec $a\in\mathbb{Z}$ $b\in\mathbb{Z}$ $c\in\mathbb{N}$ c étant le plus petit possible :

$$A = (4\sqrt{5} - 3\sqrt{6})^2$$

$$B = (2\sqrt{10} + 4\sqrt{6})^2$$

9. Ecrire sans racine carrée au dénominateur :

$$A = \frac{2 + \sqrt{2}}{3 - \sqrt{2}}$$

10. Calculer ou résoudre en justifiant :

a.
$$\sqrt{(\pi - \frac{7}{2})^2}$$
 b. $\sqrt{x - 5} = 3$ c. $\sqrt{(x - 5)^2} = 3$

b.
$$\sqrt{x-5}=3$$

c.
$$\sqrt{(x-5)^2} = 3$$

Exercice 9 corrigé disponible

- 1. Montrer que $\sqrt{2}+1$ est l'inverse de $\sqrt{2}-1$
- 2. Calculer les expressions suivantes et donner le résultat sous la forme $a+b\sqrt{c}$ avec $a \in \mathbb{Z}$ $b \in \mathbb{Z}$ $c \in \mathbb{N}$ c étant le plus petit possible :

$$-\sqrt{28}\times\sqrt{63}\times\sqrt{12}$$

$$(5\sqrt{3}-7\sqrt{2})\cdot(2\sqrt{3})$$

-
$$\sqrt{28} \times \sqrt{63} \times \sqrt{12}$$
 - $(5\sqrt{3} - 7\sqrt{2}) \cdot (2\sqrt{3})$
- $(4\sqrt{7} + 2) \cdot (3 - \sqrt{7}) - 10\sqrt{7}$ - $\frac{(2\sqrt{7} - 3\sqrt{2})}{\sqrt{2}}$

$$-\frac{(2\sqrt{7}-3\sqrt{2})}{\sqrt{2}}$$

- $-(\sqrt{3}+5)^2+(\sqrt{3}-5)^2$
- 3. Le nombre d'or est défini par $\phi = \frac{1+\sqrt{5}}{2}$

Ce nombre est solution de l'équation $x^2 = x+1$

Calculer ϕ^2 et $\phi+1$. Conclure

4. Résoudre:

a.
$$\sqrt{(x-4)^2} = -1$$

a.
$$\sqrt{(x-4)^2} = -1$$
 b. $\sqrt{(3-x)^2} = \sqrt{64}$ c. $\sqrt{2x-1} = x$

c.
$$\sqrt{2x-1}=x$$

Exercice 10 corrigé disponible

1. Calculer les expressions suivantes et donner le résultat sous la forme $a\sqrt{b}$ avec a et b le plus petit possible :

$$A = -5\sqrt{12} + 2\sqrt{48} + 2\sqrt{27}$$

$$B = \sqrt{112} \times \sqrt{28} \times \sqrt{63}$$

2. Calculer les expressions suivantes et donner le résultat sous la forme $a+b\sqrt{c}$ avec a, b et c entiers:

$$C = (2\sqrt{7} + 3\sqrt{10})^2$$

$$D = (\sqrt{5} - 2\sqrt{11})^2$$

3. Calculer les expressions suivantes et donner le résultat sous la forme d'un nombre entier:

$$E = (4 - 3\sqrt{5})(4 + 3\sqrt{5})$$
 $F = \frac{16\sqrt{18}}{6\sqrt{32}}$

$$F = \frac{16\sqrt{18}}{6\sqrt{32}}$$

Exercice 11 corrigé disponible

Soit la fonction définie par $f(x)=x^3$

- 1. Quel est le domaine de définition de f(x) ?
- 2. Etude des variations

On suppose que $0 \le a < b$:

- **a.** Quel est le signe de a b?
- **b.** Déterminer f(a) et f(b) et les comparer.

On utilise l'identité remarquable : $a^3 - b^3 = (a - b) \cdot (a^2 + ab + b^2)$

c. Quel est alors le sens de variation de la fonction cubique sur $[0;+\infty[$

On suppose que $a < b \le 0$:

- **d.** Quel est le signe de a b?
- **e.** Déterminer f(a) et f(b) et les comparer.
- **f.** Quel est alors le sens de variation de la fonction cubique sur $]-\infty;0]$.

Cas général

- **g.** Dresser le tableau de variation de la fonction cube sur \mathbb{R} .
- 3. Comparer $f(\frac{\pi}{2})$ et $f(\sqrt{2})$; justifier

Soit la fonction $g(x)=3x^2-3x+1 \quad \forall x \in \mathbb{R}$

4. Comparer f(x) et g(x); que peut-on en déduire pour la position relative des courbes représentatives de f(x) et g(x)?

Exercice 12 corrigé disponible

1. Représenter dans un repère orthonormal du plan

la fonction $f(x) = \frac{1}{x}$ pour $x \in [-5; 5]$

- 2. Compléter :
 - si x < -1 alors ... $< \frac{1}{x} < ...$
 - si $1 \le x \le 2$ alors ... $< \frac{1}{x} < ...$
- 3. Résoudre algébriquement dans R :
 - $-\frac{1}{x}=-3$
- $-\frac{1}{y} \ge 2$

- $\frac{1}{x} \le 1$
- 4. Retrouver graphiquement les résultats de la question 3.

Exercice 13 corrigé disponible

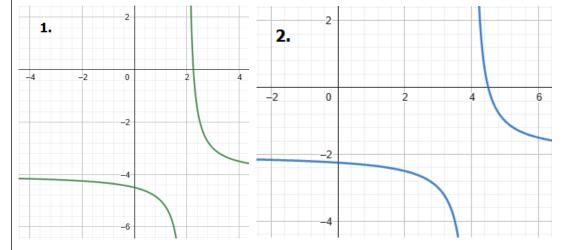
Associer à chaque fonction sa représentation graphique :

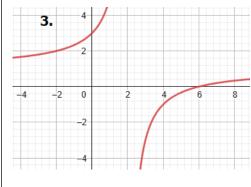
 $- f(x) = \frac{-2}{(x-4)} + 1$

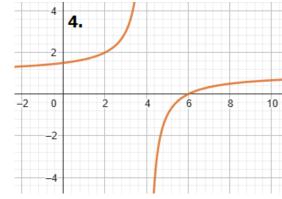
 $-g(x) = \frac{1}{(x-4)} - 2$

 $-h(x) = \frac{-4}{(x-2)} + 1$

 $-i(x)=\frac{1}{(x-2)}-4$







Exercice 14 corrigé disponible

Soit f la fonction définie pour tout réel $x \neq -2$ par $f(x) = 1 - \frac{6}{x+2}$. On note C_f sa courbe représentative dans le plan muni d'un repère orthonormé

- 1. Calculer les coordonnées des points d'intersection de la courbe C_f avec les axes du repère.
- 2. a) Étudier le sens de variation de la fonction f sur l'intervalle $]-2;+\infty[$
 - b) On admet que la fonction f est strictement croissante sur l'intervalle $]-\infty;-2[$. Donner le tableau de variations de la fonction f.
- 3. Soit g la fonction affine telle que g(-1) = -3 et g(3) = 1. Déterminer l'expression de g(x) en fonction de x.
- 4. a) Montrer pour tout réel $x \neq -2$, $f(x) g(x) = \frac{x x^2}{x + 2}$.
 - b) Résoudre l'inéquation $f(x) \le g(x)$.

Exercice 15 corrigé disponible

- 1. Résoudre l'inéquation $\frac{1}{x} > 4$
- 2. Résoudre l'inéquation $\frac{1}{x} \geq -3$
- 3. Résoudre l'inéquation $1 \le x^3 < 27$
- 4. Résoudre l'inéquation $x^3 > 8$

Exercice 16 corrigé disponible

Un rectangle a une aire égale à $60m^2$. On note x la largeur et y la longueur, en m de ce rectangle.

- 1. Exprimer la longueur y en fonction de x
- 2. Déterminer la largeur x lorsque y=24
- 3. On souhaite que la longueur de ce rectangle soit telle que $y \leq 10$ Montrer que sa largeur doit être telle que $\frac{1}{\pi} \leq \frac{1}{6}$ Déterminer les valeurs possibles de x

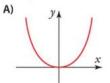
Exercice 17 corrigé disponible

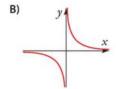
Calculer l'image de chaque nombre par la fonction cube

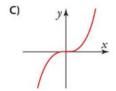
- 1. 3
- 2. -1

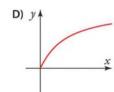
Exercice 18 corrigé disponible

Retrouver à quelle fonction, à quel ensemble de définition et à quelle expression littérale correspond chacune des courbes représentatives des fonctions de référence suivantes.









- 1. fonction inverse
- 2. fonction cube
- 3. fonction racine carrée
- 4. fonction carré

- a) définie sur [0; +∞[
- b) définie sur R
- d) définie sur \mathbb{R}
- $f(x) = \frac{1}{x}$ II) $h(x) = x^3$ c) définie sur R*

C)

- III) $g(x) = \sqrt{x}$
- IV) $i(x) = x^2$
 - D)

Exercice 19

Résoudre les équations et inéquations suivantes :

1.
$$\frac{1}{x} = -5$$

$$2. \quad \frac{3}{x} \ge -2$$

3.
$$\frac{x}{2x+3} = -\frac{3}{4}$$

$$4. \quad \frac{4-7x}{2x+1} \ge 0$$

Exercice 20

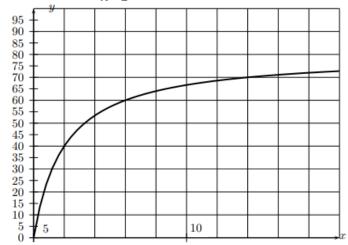
Dans une entreprise vendant des céréales une campagne de publicité est faite pour la promotion du produit le pourcentage de personnes connaissant le nom du produit après x semaines de publicité est donné par

$$p(x) = \frac{80 x}{x+1}$$

- 1. Calculer p(4) et en déduire le pourcentage de personne ignorant le nom du produit après x semaines de publicité
- 2. L'écriture de p(x) est-elle compatible avec les affirmations suivantes ?
 - a. avant la campagne, personne ne connaissait le produit
 - b. après 15 semaines, tout le monde connaît le produit

L'entreprise envisage une campagne de 10 semaines de publicité la courbe

de la fonction $p(x) = \frac{80 x}{x+1}$ est représentée ci dessous pour $x \in [0;10]$



- 3. Déterminer graphiquement la durée nécessaire pour que p(x) dépasse 60%
- 4. Déterminer graphiquement combien de semaines supplémentaires sont nécessaires pour que le pourcentage p(x) dépasse 70%
- 5. La campagne de publicité sera efficace durant les trois premières semaines puis moins efficace ensuite! au vu du graphique, cette affirmation est-elle justifiée?

Exercice 21

Résoudre dans \mathbb{R} les équations ou inéquations suivantes :

1.
$$\frac{2x+1}{-x+4} = 0$$

2.
$$\frac{-x+3}{x-1} = 2$$

3.
$$\frac{-2x+3}{x-4} \ge 0$$