Nomenclature organique et isomérie – Exercices – Devoirs

Exercice 1 corrigé disponible

Représentez en projection de Newman la (ou les) conformation(s) la (ou les) plus stable(s) pour les composés suivants :

- a. 2,3-diméthylbutane
- b. 1,2-dichloroéthane
- c. acide 3-hydroxypropanoïque

Exercice 2 corrigé disponible

- 1. Classez les groupes suivants par ordre de priorité décroissante d'après les règles de Cahn, Ingold et Prélog :
 - a. N, H, Cl, Br, S, D
 - b. CH₃, C₂H₅, OH, NH₂, C(CH3)₃
 - c. C₆H₅, CH=CH₂, CHBr₂, CH₂I
- 2. Indiquez la configuration absolue du carbone asymétrique des molécules représentées ci-dessous puis les nommer

a) CI b) CHO COOH
$$CH_3$$
 COOH CH_2OH H_2N H

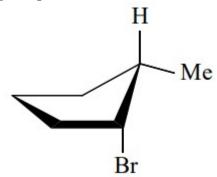
Exercice 3 corrigé disponible

Précisez la configuration E ou Z des alcènes suivants puis nommer a et b :

$$a) \stackrel{\mathsf{CH}_3}{\searrow} \overset{\mathsf{CHO}}{\underset{\mathsf{H}}{\swarrow}} \mathsf{CH_2CH_3}$$

b)
$$H_2C=CH$$
 CH_2CH_2OH CH_3CH_2 CH_2OH

Exercice 4 corrigé disponible


- 1. Quel isomère du diméthylcyclohexane ne présente pas de conformation chaise cis-trans ?
- 2. Représenter les 2 isomères de conformation chaise du 1,2-diméthylcyclohexane ? Lequel est le plus stable ?
- 3. Combien existe-t-il de stéréoisomères chaises du trans-1,3-diméthylcyclohexane ?

Exercice 5 corrigé disponible

Exercice 6 corrigé disponible

Précisez la configuration absolue du carbone asymétrique des molécules suivantes puis les nommer

Exercice 7 corrigé disponible

Nommer le composé chimique suivant

Exercice 8 corrigé disponible

Représenter selon Cram l'énantiomère de configuration S pour les molécules suivantes : a) (1S)-1-chloro-2,2-diméthyl-1-phénylpropane b) (2S)-1-amino-2-méthylbutan-2-ol

Exercice 9

Nommer les composés chimiques suivants

Exercice 10 corrigé disponible

- 1. Attribuer à chaque couple le terme approprié : identiques, stéréoisomères de conformation, énantiomères, diastéréoisomères
- 2. Nommer chaque molécule

Exercice 11 corrigé disponible

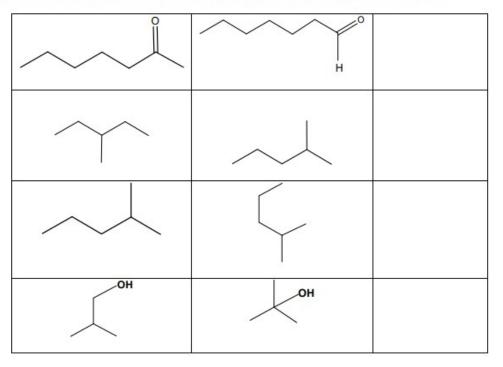
La photoisomérisation du rétinal intervient dans le cycle de la vision :

Indiquer tous les descripteurs Z ou E de ces deux molécules.

Exercice 12 corrigé disponible

Nommer les molécules suivantes sans omettre de préciser leur(s) stéréodescripteur(s).

Exercice 13


Préciser tous les descripteurs stéréochimiques de cette molécule.

Nommer la molécule

Exercice 14

Nommer les molécules suivantes

Quelle relation d'isomérie existe-t-il entre chaque paire de molécules ?

Exercice 15

La structure de l'acide amine (isoleucine) est donnée ci-dessous :

- 1) Combien de carbones asymétriques (C*) existe-t-il dans cette molécule ?
- 2) Donner tous les stéréoisomères possibles et déterminer la configuration absolue (R, S) de chaque carbone asymétrique (C*).

Exercice 16

Faire correspondre chaque molécule à la définition qui lui convient :

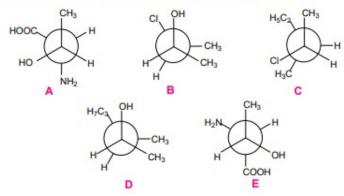
	Ni Activité optique ni Isomérie E, Z	Activité optique et Isomérie E, Z	Isomérie E, Z mais pas d'activité optique	Activité optique mais pas d'isomérie E, Z
CI				
G				
CI C				
CI				

Exercice 17

Nommer la molécule suivante :

Exercice 18

Quelle relation d'isomérie existe-t-il pour chaque paire de molécules ?


I (Identiques), E (Enantiomères), D (Diastéréoisomères)

Exercice 19

Combien de stéréoisomères, l'alcool allylique (molécule ci-dessous) possède-t-il ?

Exercice 20

- 1) Convertir les molécules suivantes en représentation de Cram puis les nommer en précisant leur configuration absolue (R/S).
- 2) Quelle relation existe-t-il entre les molécules A et D?

Exercice 21

Ibuprofène est un analgésique et un anti-inflammatoire :

Ibuprofène

- 1) Combien de carbones asymétriques (C*), cette molécule possède-t-elle ?
- 2) Déterminer la configuration absolue (R, S) de chaque C*.
- 3) Dessiner un énantiomère de l'ibuprofène.
- 4) Dessiner un diastéréoisomère de l'ibuprofène.

Exercice 22

- 1) Dessiner la molécule (3R,4Z,6S)-3,6-diméthyloct-4-ène-3,6-diol.
- 2) Cette molécule est-elle chirale ?

Exercice 23

Combien de carbones asymétriques ces molécules possèdent-elles ?

NCH₃

Quinine

Morphine

Acide ascorbique

Exercice 24

Représenter les molécules suivantes selon la projection de Cram

- a) (R) 2-bromopentane
- b) (3S,4R) 3,4-dibromoheptane
- c) (S) 1-fluoro-2-chloropropane
- d) (R) 3-méthylhexan-3-ol
- e) (2R,3R) 3-méthylpentan-2-ol
- f) (R) 3-éthyl 3-méthylhex-1-ène

Exercice 25

Selon la règle séquentielle de Cahn-Ingold-Prelog, quel est l'ordre de priorité des groupements suivants ?

1)
$$-OCH_3$$
 $-NHCH_3$ $-CCI_3$ $-CONH_2$ $-CH_2OH$

3) — Br — H — COOH —
$$C_6H_5$$
 — CH_3

4)
$$-NH_2$$
 $-CHO$ $-OCOCH_3$ $-C\equiv CH$ $-CH_3$

Exercice 26

Représenter les molécules suivantes selon la projection de Fischer :

- a) (R) 2-bromopentane
- b) (3S,4R) 3,4-dibromoheptane
- c) (S) 1-fluoro-2-chloropropane
- d) (R) 3-méthylhexan-3-ol
- e) (2R,3R) 3-méthylpentan-2-ol
- f) (R) 3-éthyl 3-méthylhex-1-ène

Exercice 27

Les molécules suivantes sont-elle chirales ?