Réactivité chimique – Fiche de cours

1. Catégories de réactions chimiques

a. Substitution

Un groupe d'atomes est remplacé par un autre.

b. Addition

Deux groupes d'atomes viennent se fixer sur une molécule, avec rupture d'une liaison multiple.

c. Elimination

Deux groupes d'atomes sont retirés d'une molécule, avec formation d'une liaison multiple.

2. Mécanisme réactionnel

a. Sites donneurs et accepteurs

site accepteur

défaut d'électron ; généralement les atomes électropositifs liés à un ou plusieurs atomes très électronégatifs.

- site donneur

excès d'électrons (anion, liaison multiple, doublet non liant, atome électronégatif)

b. Mouvement de doublets d'électrons

Les mouvements de doublet d'électrons sont représentés par des flèches courbes

- formation de liaison

Les électrons vont du site donneur vers le site accepteur

- rupture de liaison

Les électrons vont vers l'atome le plus électronégatif

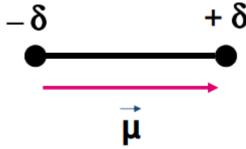
- mouvement de liaison simple

Un doublet simple réalise une rotation autour d'un atome pour créer une liaison multiple

3. Electrophilie

Réactif pauvre en électrons ou qui attaque les électrons ; il s'agit d'acides de Lewis / groupes chargés +

4. Nucléophilie


Réactif riche en électrons ou qui attaque les noyaux ; il s'agit de bases de Lewis / groupes chargés - / doublets libres / électrons pi

5. Solvant protique / aprotique

Un solvant est protique lorsqu'il contient des protons hydrogènes

6. Moment dipolaire

On définit le moment dipolaire d'une liaison par :

avec $\vec{\mu} = \delta \cdot \vec{\ell}$ et ℓ la longueur de la liaison L'unité du moment dipolaire est le C ; on peut utiliser le Debye $1D=3,34.10^{-30}C.m$

7. Les liaisons intra et intermoléculaires

Les molécules peuvent s'associer selon 2 types d'interactions faibles:

- les forces de Van-der-Waals (intermoléculaires)
- les liaisons hydrogène (intra et intermoléculaires)

a. Interactions de Van-der-Waals

- force de Keesom

Interaction de type dipôle permanent – dipôle permanent Il s'agit de l'action d'un composé polaire sur un autre composé polaire

- force de Debye

Interaction de type dipôle permanent – dipôle induit Il s'agit de l'action d'un composé polaire sur un autre composé apolaire (qui se polarise temporairement en présence d'un composé polaire)

- force de London

Interaction de type dipôle induit – dipôle induit Il s'agit de l'action de 2 composés apolaires qui sous leur propre action se polarisent temporairement rendant l'interaction possible Il peut également s'agir de l'action d'un composé polaire sur un composé apolaire

b. Liaisons hydrogène

La liaison hydrogène est plus énergétique que les forces de Van-der-Waals

Un atome d'hydrogène placé sur une liaison polaire R-H peut interagir à distance avec l'un des atomes suivants : N, O, F, Cl

- <u>liaisons hydrogène intramoléculaires</u> : diminution des températures de changement d'état et de la solubilité
- <u>liaisons hydrogène intermoléculaires</u> : augmentation des températures de changement d'état et de la solubilité