Les applications linéaires – Fiche de cours

1. Définition

Soient E et F 2 sev de \mathbb{R} et f une application de E vers F f est une application linéaire ssi : $\forall u, v \in E, \forall a, b \in \mathbb{R}$ $f(au+bv)=a\cdot f(u)+b\cdot f(v)$

2. Propriétés

- f(u+v)=f(u)+f(v) et f(ax)=af(x)
- si f est bijective l'application linéaire est appelée isomorphisme de E dans F
- si E=F l'application linéaire est appelée endomorphisme de E dans E
- si E=F et f est bijective l'application linéaire est appelée automorphisme de E dans E
- Le noyau de l'application linéaire f est défini par : $Ker f \in E$ avec $Ker f = \{x \in E, f(x) = 0\}$
- L'image de l'application linéaire f est définie par : $\operatorname{Im} f \in E$ avec $\operatorname{Im} f = [f(x), x \in E]$
- f est injective ssi $Ker f = \{0_E\}$
- f est surjective ssi Im f = F

3. Applications linéaires particulières

a. <u>Projecteur</u>

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires de E Le projecteur sur E_1 parallèlement à E_2 est un endomorphisme

$$p: \begin{array}{c} E = E_1 \oplus E_2 \rightarrow E \\ x = x_1 + x_2 \rightarrow x_1 \end{array}$$

Le projecteur sur E₂ parallèlement à E₁ est un endomorphisme

$$p: \begin{array}{c} E = E_1 \oplus E_2 \rightarrow E \\ x = x_1 + x_2 \rightarrow x_2 \end{array}$$

<u>Propriétés</u>:

- $p \in \mathcal{L}(E)$ et $p \circ p = p$
- $\operatorname{Im}(p) = E_1$ et $\operatorname{Ker}(p) = E_2$
- si $x \in E_1 \Leftrightarrow p(x) = x$

b. Symétrie

Soient E_1 et E_2 deux sous-espaces vectoriels supplémentaires de ELa symétrie par rapport à E_1 parallèlement à E_2 est un endomorphisme

s:
$$E = E_1 \oplus E_2 \rightarrow E$$

 $x = x_1 + x_2 \rightarrow x_1 - x_2$

La symétrie par rapport à E₂ parallèlement à E₁ est un endomorphisme

s:
$$E = E_1 \oplus E_2 \rightarrow E$$
$$x = x_1 + x_2 \rightarrow x_2 - x$$

<u>Propriétés</u>:

- $s \circ s = Id_E$ et $s^{-1} = s$
- $\operatorname{Im}(s) = E$ et $\operatorname{Ker}(s) = \{0_E\}$
- si $x \in E_1 \Leftrightarrow s(x) = x$; si $x \in E_2 \Leftrightarrow s(x) = -x$