L'atome – Exercices - Devoirs

QCM 1 corrigé disponible

Donnez le caractère vrai ou faux de chacune des propositions suivantes :

Soit l'atome 39/K (K=Potassium)

- A. Il possède 20 protons.
- B. La masse de l'atome de K est essentiellement due à la masse des protons.
- C. Le noyau de cet atome contient 39 nucléons.
- D. Le nuage électronique de l'ion K⁺ contient 18 électrons.
- E. L'atome pour lequel Z=19 et A=38 est un isotope de l'élément potassium.

QCM 2 corrigé disponible

Donnez le caractère vrai ou faux de chacune des propositions suivantes :

Dans le modèle de Bohr relatif à l'atome d'hydrogène :

- A. Le spectre d'émission de l'atome d'hydrogène est un spectre continu.
- B. L'énergie des différents niveaux, exprimée en fonction du nombre quantique principal n, est donnée par la relation : E_n = 13,6/n² eV.
- C. Le rayon des orbites circulaires possibles pour l'électron est quantifié.
- Dans le spectre d'absorption, l'électron passe d'un niveau d'énergie E_n à un niveau d'énergie supérieur E_n;
- E. La radiation émise lors de la transition de l'électron entre n=2 et n=1 est observable dans le domaine du visible.

QCM 3 corrigé disponible

Donnez le caractère vrai ou faux de chacune des propositions suivantes :

- A. L'ensemble de nombres quantiques : n = 5 ; l = 1 ; m = 0, définit une orbitale atomique 5p.
- B. Sur la couche caractérisée par le nombre quantique principal n = 2, il existe 4 orbitales atomiques.
- C. La sous-couche électronique caractérisée par le nombre quantique I = 3, peut contenir 14 orbitales atomiques.
- D. Une orbitale atomique de type « ns » est remplie quand elle contient un doublet électronique.
- E. Les orbitales atomiques px, py et pz d'une même sous-couche n'ont pas la même énergie.

QCM 4 corrigé disponible

Donnez le caractère vrai ou faux de chacune des propositions suivantes :

Le sélénium (Se) appartient au groupe 16 et à la 4ème période du tableau périodique :

- A. Son numéro atomique est de 33.
- B. Il possède dans sa couche électronique de valence, 2 électrons célibataires.
- C. Son rayon atomique est plus petit que celui de l'atome de titane (22Ti).
- D. Il peut donner l'anion divalent Se2-.
- E. Il est plus électronégatif que l'atome d'oxygène (8O).

QCM 5 corrigé disponible

- A) Un élément chimique est défini par son nombre de nucléons.
- B) Les masses du proton et du neutron sont quasiment égales à une unité de masse atomique.
- C) Deux isotopes d'un même élément diffèrent par leur nombre total de nucléons.
- D) Les électrons font partie des nucléons.
- E) Le noyau de l'atome ¹₁H ne contient aucun neutron.

QCM 6 corrigé disponible

Dans le modèle de Bohr, relatif à l'atome d'hydrogène :

- A) Les niveaux d'énergie possibles pour l'électron sont quantifiés.
- B) Toutes les orbites possibles pour l'électron sont circulaires.
- C) Un atome dans un état excité est un atome qui a perdu un électron.
- D) Dans le spectre d'émission de l'hydrogène, la série de Paschen correspond au retour de l'électron sur la couche n = 3.
- E) L'absorption par un atome d'une quantité d'énergie égale à 13,6 eV permet de transformer cet atome en ion H⁺.

QCM 7 corrigé disponible

A propos du modèle quantique de l'atome :

- A) Une orbitale atomique caractérisée par l'ensemble des nombres quantiques suivants : $n=1,\,l=0,\,m=0,\,$ est une orbitale de forme sphérique.
- B) Pour un atome polyélectronique, le nombre quantique « m » permet de caractériser l'énergie d'une orbitale atomique.
- C) Une orbitale atomique « p » est toujours définie par un nombre quantique secondaire l = 1.
- D) L'ensemble des nombres quantiques suivants caractérise un électron dans une orbitale atomique de type « f » : n = 4, l = 2, m = -2, $s = +\frac{1}{2}$.
- E) Lors du remplissage des différents niveaux électroniques d'un atome, le remplissage de la sous-couche 5s intervient après celui de la sous-couche 4d.

QCM 8 corrigé disponible

L'arsenic (As) appartient au groupe 15 et à la 4ème période du tableau périodique.

- A) Son numéro atomique est 32.
- B) Il possède, sur sa couche électronique externe, seulement 2 électrons célibataires.
- C) Il appartient au même groupe que l'oxygène (8O).
- D) C'est un élément de transition.
- E) L'élément appartenant à la 3^{ème} période et à la même colonne que l'arsenic a un numéro atomique égal à 15.

QCM 9 corrigé disponible

On considère les éléments X, Y et Z dont les numéros atomiques sont respectivement 9, 12 et 14.

- A) Ces 3 éléments appartiennent à la même période.
- B) L'élément X est un halogène.
- C) L'élément Y est un métal.
- D) Le rayon atomique de l'élément Z est supérieur à celui de l'élément Y.
- E) L'énergie de 1ère ionisation de l'élément X est supérieure à celle de l'élément Y.

QCM 10 corrigé disponible

Indiquer si les propositions suivantes sont vraies ou fausses.

Soient deux isotopes du chlore : 35Cl et 37Cl.

Parmi les propositions suivantes, lesquelles sont correctes ?

- A. Ces deux isotopes ont le même nombre de protons.
- B. Ces deux isotopes ont le même numéro atomique.
- C. ³⁷Cl a deux électrons de plus que ³⁵Cl.
- D. Ces deux isotopes ont des masses atomiques différentes.
- E. ³⁷Cl a deux neutrons de plus que ³⁵Cl.

QCM 11 corrigé disponible

Considérons l'atome d'hydrogène $_1$ H. On donne $E_n=-\frac{13,6}{n^2}$ eV.

Indiquer si les propositions suivantes sont vraies ou fausses.

- A. L'écart énergétique entre l'état fondamental et le premier état excité est de 1,89 eV.
- B. Les niveaux d'énergie sont quantifiés.
- C. Dans le spectre d'absorption de l'atome d'hydrogène, la raie d'énergie 10,2 eV appartient à la série de Balmer.
- D. Le spectre d'émission de l'atome d'hydrogène est un spectre continu.
- E. La fréquence υ d'un rayonnement est égale à sa longueur d'onde que multiplie la célérité.

QCM 12 corrigé disponible

Indiquer si les propositions suivantes sont vraies ou fausses.

- A. A l'état fondamental, 29Cu possède 2 électrons caractérisés par le nombre quantique m = +2.
- B. La combinaison des nombres quantiques n = 4, l = 3 représente une sous-couche constituée de 5 orbitales.
- C. L'orbitale atomique définie par la fonction d'onde $\Psi_{3,1,-1}$ a la forme de deux lobes symétriques par rapport au noyau de l'atome.
- La valeur du nombre quantique de spin s dépend de celle du nombre quantique principal n.
- E. L'ion Cu^{2+} a un seul électron dans la couche n = 4.

QCM 13 corrigé disponible

Considérons les atomes 20Ca, 23V et 35Br.

Indiquer si les propositions suivantes sont vraies ou fausses.

- A. L'énergie de première ionisation de Ca est inférieure à celle de Br.
- B. Ces trois atomes comportent le même nombre d'électrons s sur leur couche externe.
- C. V possède trois électrons célibataires.
- D. Les électrons de la couche externe de Ca à l'état fondamental sont dans une orbitale atomique caractérisée par un nombre quantique magnétique égal à 0.
- E. Le cation V³+ a la même configuration électronique que l'atome de calcium à l'état fondamental.

QCM 14 corrigé disponible

Soient deux isotopes du carbone : 12C et 13C.

Indiquer si les propositions suivantes sont vraies ou fausses.

- Ces deux isotopes ont le même nombre de protons.
- B. Ces deux isotopes ont le même nombre d'électrons.
- C. Ces deux isotopes ont le même nombre de neutrons.
- D. Ces deux isotopes ont la même masse atomique.
- E. Une mole de 12C a une masse exacte de 12,0 g.

QCM 15 corrigé disponible

Indiquer si les propositions suivantes sont vraies ou fausses.

- A. La combinaison des nombres quantiques n = 3, l = 2, m = +2 définit une orbitale atomique.
- B. La combinaison des nombres quantiques n = 2, l = 1 définit une sous-couche pouvant contenir 6 électrons au maximum.
- C. Comme l'indique le principe d'exclusion de Pauli, deux électrons situés dans la même orbitale peuvent avoir des spins parallèles.
- D. Un électron défini par la fonction d'onde $\Psi_{3,0,0}$ occupe une OA sphérique.
- E. A l'état fondamental, 15P possède 8 électrons caractérisés par le nombre quantique m = 0.

QCM 16 corrigé disponible

Considérons les éléments 55Cs et 56Ba. Indiquer si les propositions suivantes sont vraies ou fausses.

- La structure électronique de la couche externe du Cs est 6s².
- L'atome de Cs possède une énergie de première ionisation plus grande que celle du Ba.
- C. Ba possède une électronégativité plus grande que celle du Cs.
- D. Le rayon ionique de Cs⁺ est inférieur au rayon atomique de Cs.
- E. L'ion le plus stable de Ba est Ba²⁻.

QCM 17 corrigé disponible

Considérons les éléments 19K, 24Cr et 17Cl à l'état fondamental.

Indiquer si les propositions suivantes sont vraies ou fausses.

- A. Parmi ces 3 éléments, un appartient au groupe des alcalino-terreux, un au groupe des éléments de transition et un au groupe des halogènes.
- B. Le Cr possède quatre électrons célibataires.
- Ces trois éléments appartiennent à la même période.
- Un électron de la couche externe de Cr à l'état fondamental peut être caractérisé par un nombre quantique secondaire égal à +2.
- E. Les ions K⁺ et Cl⁻ ont la même configuration électronique.

QCM 18 corrigé disponible

Considérons l'atome d'hydrogène $_1H$ et son interaction avec la lumière. On donne $E_n=-\frac{13.6}{n^2}~eV.$

Indiquer si les propositions suivantes sont vraies ou fausses.

- L'énergie à fournir pour que son électron passe de l'état fondamental au niveau n = 5 est 13,6 eV.
- B. Dans son spectre d'émission, la raie correspondant à la transition 3 → 1 appartient à la série de Lyman.
- Le spectre d'absorption de l'hydrogène est continu alors que son spectre d'émission est discontinu.
- D. Tout rayonnement d'énergie égale ou supérieure à 13,6 eV permet d'ioniser l'atome d'hydrogène.
- E. Certaines raies de la série de Paschen peuvent également appartenir à la série de Lyman.

QCM 19 corrigé disponible

On vous rappelle 11Na et 17Cl.

- A. Dans une même période de la classification périodique, l'électronégativité des éléments augmente de droite à gauche.
- B. Dans une même colonne de la classification périodique, l'électronégativité des éléments augmente en descendant dans cette colonne.
- C. La taille de l'atome de fluor est supérieure à celle de l'atome de chlore.
- D. La taille de l'atome de sodium est supérieure à celle de l'atome de chlore.
- E. La taille de l'ion Na+ est inférieure à celle de l'ion Cl-.

QCM 20 corrigé disponible

- A. Une orbitale 4p est définie par l'ensemble de nombres quantiques suivants : n = 4; l = 1; m = -1, 0 ou +1.
- B. Une orbitale 5f est définie par l'ensemble de nombres quantiques suivants : n = 5; 1 = 3; m = -3, -2, -1, 0, +1, +2 ou +3.
- C. Une orbitale 7s est définie par l'ensemble de nombres quantiques suivants : n = 7; l = 1; m = 0.
- D'après la règle de Klechkowski, le remplissage des orbitales 4s s'effectue avant celui des orbitales 5d.
- E. Les électrons présents dans des orbitales 3d ont une position plus externe que les électrons présents dans une orbitale 4s.

QCM 21 corrigé disponible

On précise que les numéros atomiques donnés dans les différents items sont justes (ne pas chercher d'erreur à ce niveau-là).

- A. Le potassium 19K appartient à la 3^{ème} période et à la 1^{ère} colonne du tableau de la classification périodique des éléments.
- B. Le germanium 32Ge appartient à la 4ème période et à la 14ème colonne du tableau de la classification périodique des éléments.
- C. Le cobalt 27Co appartient à la 4^{ème} période et à la 9^{ème} colonne du tableau de la classification périodique des éléments.
- D. L'étain 50Sn appartient à la 6^{ème} période et à la 14^{ème} colonne du tableau de la classification périodique des éléments.
- E. Le mercure ₈₀Hg appartient à la 6^{ème} période et à la 12^{ème} colonne du tableau de la classification périodique des éléments.

QCM 22 corrigé disponible

- A. Une orbitale 4d est définie par l'ensemble de nombres quantiques suivants : n = 4 ; l = 1 ; m = -2, -1, 0, +1 ou +2.
- B. Une orbitale 5p est définie par l'ensemble de nombres quantiques suivants : n = 5 : 1 = 1 ; m = -1, 0 ou +1.
- C. Une orbitale 4f est définie par l'ensemble de nombres quantiques suivants : n = |4|; l = 3; m = -3, -2, -1, 0, +1, +2 ou +3.
- D'après la règle de Klechkowski, le remplissage des orbitales 4d s'effectue avant celui des orbitales 5s.
- E. Les électrons présents dans des orbitales 4s ont une position plus externe que les électrons présents dans une orbitale 3d.

QCM 23 corrigé disponible

Soient les éléments suivants : 14Si, 33As, 49In, 50Sn.

- A. Ils appartiennent tous les 4 à la même colonne de la classification périodique.
- Trois de ces 4 éléments appartiennent à la même période.
- C. Deux de ces 4 éléments appartiennent à la même famille que le carbone.
- D. L'un de ces 4 éléments présente dans sa couche externe, à l'état fondamental. 2 orbitales p vacantes.
- Deux de ces 4 éléments font partie du groupe des éléments de transition.

OCM 24 corrigé disponible

Pour résoudre cette question, on vous donne les données suivantes concernant la composition en isotopes de 51Sb. Tous les isotopes dont l'abondance est nulle sont radioactifs.

Isotope	Masse atomique (u.m.a.)	Abondance (%)
 ¹¹⁷ Sb	117	0
¹¹⁹ Sb	119	0
¹²⁰ Sb	120	0
¹²¹ Sb	120,9	60
¹²² Sb	122	0

¹²³ Sb	122,9	40	
¹²⁴ Sb	124	0	
¹²⁵ Sb	125	0	
¹²⁶ Sb	126	0	
¹²⁷ Sb	127	0	
¹²⁹ Sb	129	0	

(valeurs approchées pour faciliter la résolution de l'exercice)

- A. Les isotopes stables de Sb possèdent un nombre pair de neutrons.
- B. Les isotopes radioactifs de Sb possèdent tous un nombre pair de neutrons.
- C. La masse atomique moyenne de Sb est égale à 120,7 u.m.a.
- D. La masse atomique moyenne de Sb est égale à 121,7 u.m.a.
- E. La masse atomique moyenne de Sb est égale à 122,7 u.m.a.

OCM 25 corrigé disponible

- A. Une orbitale 5p est définie par l'ensemble de nombres quantiques suivants : n = 5; 1 = 2; m = -2, -1, 0, +1 ou +2.
- B. Une orbitale 3f est définie par l'ensemble de nombres quantiques suivants : n = 3; 1 = 3; m = -3, -2, -1, 0, +1, +2 ou +3.
- Une orbitale 6s est définie par l'ensemble de nombres quantiques suivants : n = 6 ; 1 = 0 ; m = 0.
- D'après la règle de Klechkowski, le remplissage des orbitales 5s s'effectue avant celui des orbitales 4f.
- E. Les électrons présents dans des orbitales 4d ont une position plus interne que les électrons présents dans une orbitale 5s.

QCM 26 corrigé disponible

Soient les éléments suivants : 21Sc ; 24Cr ; 31Ga ; 33As ; 36Kr ; 42Mo ; 52Te ; 83Bi.

On vous indique par ailleurs que 42Mo présente, pour sa configuration électronique à l'état fondamental, le même type d'exception que celle de 24Cr.

- A. 21Sc est plus électronégatif que 31Ga.
- B. 33As est plus électronégatif que 83Bi.
- C. Le rayon atomique de 33As est plus petit que celui de 83Bi.
- D. Le rayon atomique de 42Mo est plus petit que celui de 52Te.
- E. La configuration électronique de 42Mo à l'état fondamental peut s'écrire [36Kr]4d55s1.

OCM 27 corrigé disponible

Le fer (26Fe) possède 3 isotopes principaux donnés dans le tableau ci-dessous :

Isotope	Masse atomique (u.m.a.)	Abondance (%)
⁵⁴ Fe	54	6
⁵⁶ Fe	56	92
⁵⁷ Fe	57	2

(valeurs approchées pour faciliter la résolution de l'exercice)

- A. La masse atomique moyenne du fer est de 55,9 u.m.a.
- B. La masse atomique moyenne du fer est de 55,6 u.m.a.
- C. Les isotopes du Fe mentionnés dans le tableau possèdent tous un nombre pair de neutrons.
- D. Les isotopes du Fe mentionnés dans le tableau possèdent tous un nombre pair de protons.
- E. La configuration électronique de l'ion Fe³⁺ à l'état fondamental se termine en 3d⁵.

QCM 28 corrigé disponible

Si l'on considère les noyaux de 2 isotopes différents et parfaitement stables d'un même élément naturel (I) et (II) :

- A Le nombre de masse de (I) est différent de 11.
- B Le numéro atomique de (II) est égal à 5.
- C Le noyau (II) contient 11 neutrons.
- D Ces 2 noyaux contiennent le même nombre de nucléons.
- E Les noyaux (I) et (II) contiennent obligatoirement le même nombre de protons.

QCM 29 corrigé disponible

A propos du modèle quantique de l'atome :

- A Une orbitale atomique caractérisée par l'ensemble des nombres quantiques suivants : n = 1, 1 = 0, m = 0, est une orbitale de forme sphérique.
- B Pour un atome polyélectronique, l'énergie d'une orbitale atomique est fonction des 2 nombres quantiques « n » et « 1 ».
- C Le nombre quantique secondaire décrit la forme de l'orbitale.
- D Les orbitales atomiques de type « d » existent quelque soit le niveau n.
- E L'ensemble des nombres quantiques suivants caractérise un électron dans une orbitale atomique de type « f » : n = 4, l = 2, m = -2, $s = +\frac{1}{2}$.

QCM 30 corrigé disponible

Dans le modèle de Bohr, relatif à l'atome d'hydrogène :

- A L'énergie des orbites circulaires possibles pour l'électron est quantifiée.
- B L'expression du rayon de l'orbite circulaire caractérisée par le nombre quantique principal n = 4 est : r₄ = 0.53 / 4 Å
- C L'absorption d'une énergie de 13,6 eV permet de passer de l'atome H dans son état fondamental à l'ion H⁺.
- D La radiation émise lors de la transition entre le niveau n = 4 et n = 2 appartient à la série de Balmer.
- E Toutes les radiations appartenant à la série de Lyman, sont des radiations émises dans le domaine des ultra-violets (UV).

QCM 31 corrigé disponible

Le sélénium (Se) appartient au groupe 16 et à la 4 em période du tableau périodique :

- A Son numéro atomique est de 32.
- B Il possède dans sa couche électronique externe, 3 électrons célibataires.
- C Il appartient au même groupe que l'atome d'azote (7N).
- D Il peut donner un anion divalent (Se²).
- E C'est un élément de transition.

QCM 32 corrigé disponible

Soient les éléments du tableau périodique suivants : 8O, 18Ar, 20Ca, 29Cu, 35Br

- A L'oxygène est l'élément le plus électronégatif du tableau périodique.
- B-L'argon est un gaz rare.
- C Le rayon atomique du brome est inférieur à celui du calcium.
- D Le calcium appartient à la famille des alcalins.
- E Le cuivre, dans son état fondamental, possède une sous-couche « d » incomplète.