Les suites numériques – Fiche de cours

1. Généralité des suites

a. Définition

Une suite numérique (u_n) est une fonction (ou un tableau de valeurs) définie par :

$$\mathbb{N} \rightarrow \mathbb{R}$$
 $n \rightarrow u_n$

 u_n est appelé terme de la suite

n est appelé indice ou rang

b. Suites explicites

La relation fonctionnelle ou explicite d'une suite (u_n) est :

$$\forall n \in \mathbb{N} \qquad u_n = f(n)$$

c. Suites récurrentes

La relation de récurrence d'ordre 1 d'une suite (u_n) est :

$$\begin{cases} u_0 \\ u_{n+1} = f(u_n) \end{cases}$$

2. Limites de suite

a. Définition

L'infini est un concept qui n'a pas d'équivalent physique ; il s'agit d'une limite

La limite d'une suite (u_n) est définie par $\lim_{n \to +\infty} u_n$

b. <u>Limites de référence</u>

Conséquence Les suites définies pour tout entier naturel n non nul par :

$$u_n=rac{1}{n}, \quad v_n=rac{1}{n^2}, \quad w_n=rac{1}{n^3}, \quad t_n=rac{1}{\sqrt{n}}, \quad ext{ont pour limite 0}$$

Conséquence Les suites définies pour tout entier naturel par :

$$u_n = n$$
, $v_n = n^2$, $w_n = n^3$, $t_n = \sqrt{n}$, ont pour limite $+\infty$

c. Opération de limites

- Limite d'une somme

Si (u_n) a pour limite	ℓ	ℓ	ℓ	+∞	-∞	+8
Si (v_n) a pour limite	ℓ′	+∞	-∞	+∞	-∞	-∞
alors $(u_n + v_n)$ a pour limite	$\ell + \ell'$	+∞	-∞	+∞	-∞	F. Ind.

- Limite d'un produit

Si (u_n) a pour limite	l	$\ell \neq 0$	0	∞
Si (v_n) a pour limite	ℓ′	∞	∞	∞
alors $(u_n \times v_n)$ a pour limite	$\ell \times \ell'$	∞*	F. ind.	∞*

- Limite d'un quotient

Si (u_n) a pour limite	l	$\ell \neq 0$	0	l	∞	∞
Si (v_n) a pour limite	$\ell' \neq 0$	0 (1)	0	∞	ℓ′	00
alors $\left(\frac{u_n}{v_n}\right)$ a pour limite	$\frac{\ell}{\ell'}$	∞*	F. ind.	0	∞*	F. ind.

d. Théorème de comparaison et d'encadrement

Théorème 2 : Soit trois suites (u_n) , (v_n) et (w_n) . Si à partir d'un certain rang, on a :

1) Théorème d'encadrement ou "des gendarmes"

$$v_n\leqslant u_n\leqslant w_n$$
 et si $\lim_{n\to +\infty}v_n=\ell$ et $\lim_{n\to +\infty}w_n=\ell$ alors $\lim_{n\to +\infty}u_n=\ell$

- 2) Théorème de comparaison
 - $u_n \geqslant v_n$ et si $\lim_{n \to +\infty} v_n = +\infty$ alors $\lim_{n \to +\infty} u_n = +\infty$
 - $u_n \leqslant w_n$ et si $\lim_{n \to +\infty} w_n = -\infty$ alors $\lim_{n \to +\infty} u_n = -\infty$

e. Limites des suites géométriques

Soit q un réel; on a les limites suivantes:

-si
$$q>1$$
 alors $\lim_{n\to\infty} q^n = +\infty$

-si
$$q=1$$
 alors $\lim_{n\to\infty} q^n=1$

- si
$$0 < q < 1$$
 alors $\lim_{n \to \infty} q^n = 0$

3. Suites arithmético-géométriques

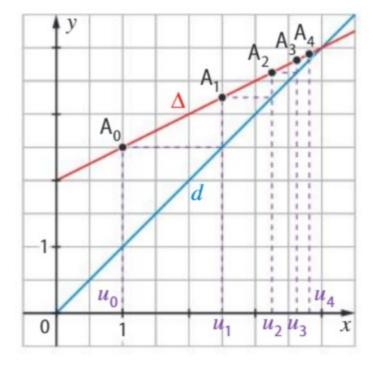
a. Définition

Une suite arithmético-géométrique est définie par :

$$\begin{cases} u_0 \\ u_{n+1} = au_n + b \end{cases} \forall a \in \mathbb{R} b \in \mathbb{R}$$

b. Représentation graphique

On pose un double changement de variable avec $x=u_n$ et $y=u_{n+1}$ On construit la courbe représentative de f et la droite d'équation y=xPuis on représente $u_1=f(u_0)$ $u_2=f(u_1)$ $u_3=f(u_2)$



c. Expression du terme général

On étudie la suite définie par $\begin{cases} u_0 \\ u_{n+1} = au_n + b \end{cases} \forall a \in \mathbb{R} b \in \mathbb{R}$

On détermine $c = \frac{b}{1-a}$ puis on étudie $v_n = u_n - c$

On démontre que (v_n) est géométrique, puis on en déduit l'expression du terme général de (v_n) et de (u_n)