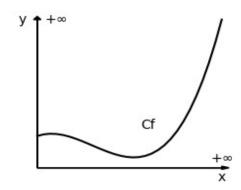
Limites de fonctions, comportement asymptotique – Fiche de cours

1. Limite infinie en l'infini

a. Définition

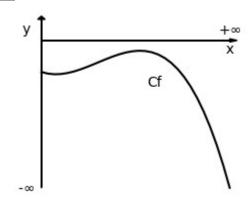
L'infini est un concept qui n'a pas d'équivalent physique ; il s'agit d'une limite

- limite en +∞ :



 $\lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall A \in \mathbb{R} \exists x \in \mathbb{R} \ telquef(x) \in]A; +\infty[$

- <u>limite en -∞</u>:



$$\lim_{x \to \pm \infty} f(x) = -\infty \iff \forall A \in \mathbb{R} \ \exists x \in \mathbb{R} \ telquef(x) \in]-\infty; A[$$

b. Limites de références

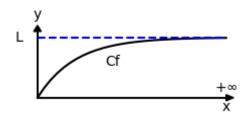
 $\forall x \in \mathbb{R}^*, \forall n \in \mathbb{N}^*$

$$-\lim_{x \to +\infty} x^n = +\infty \qquad -\lim_{x \to +\infty} \sqrt{x} = -1$$

$$-\lim_{x \to -\infty} x^n = \begin{cases} +\infty & n \text{ pair} \\ -\infty & n \text{ impair} \end{cases} - \lim_{x \to +\infty} e^x = +\infty$$

2. Limite réelle en l'infini

a. Définition



$$\lim_{x \to \pm \infty} f(x) = L \iff \forall A > 0 \ \exists x \in \mathbb{R} \ tel \ que \ f(x) \in]L - A; L + A[$$

b. Limites de références

 $\forall x \in \mathbb{R}^*, \forall n \in \mathbb{N}^*$

$$-\lim_{x\to+\infty}\frac{1}{\sqrt{x}}=0$$

$$\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$$

$$-\lim_{x\to-\infty}e^x=0$$

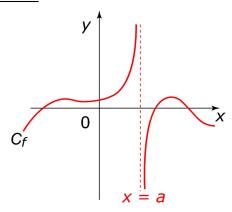
c. Asymptote horizontale

 $\lim_{x \to \pm \infty} f(x) = L \iff \text{la droite d'équation} \qquad y = L \text{ est asymptote}$

horizontale à la courbe représentative de f en $\pm \infty$

3. Limite infinie pour un réel

a. Mise en évidence



b. Limites de références

 $\forall x \in \mathbb{R}^*, \forall n \in \mathbb{N}^*$

$$-\lim_{\substack{x\to 0\\x>0}}\frac{1}{\sqrt{x}}=+\infty$$

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x^n} = +\infty$$

$$-\lim_{\substack{x\to 0\\x<0}}\frac{1}{x^n} = \begin{cases} +\infty & n \text{ pair}\\ -\infty & n \text{ impair} \end{cases}$$

c. Asymptote verticale

 $\lim_{x \to a} f(x) = \pm \infty \iff \text{la droite d'équation} \qquad x = a \text{ est asymptote}$ verticale à la courbe représentative de f

4. Croissances comparées

$$-\lim_{x\to\infty}\frac{e^x}{x^n}=+\infty$$

$$-\lim_{x\to -\infty}x^n\cdot e^x=0$$

5. Opérations sur les limites

a. Somme de deux fonctions

lim f	1	1	1	+∞	-∞	+∞
lim g	1'	+∞	-∞	+8	-8	-∞
lim f + g	1 + 1'	+∞	-∞	+8	-8	FI

b. Produit de deux fonctions

lim f	1	<i>l</i> > 0	<i>l</i> > 0	<i>l</i> < 0	<i>l</i> < 0	+∞	+∞	-∞	0
lim g	ľ	+∞	-∞	+∞	-8	+8	-∞	-∞	(±∞)
$\lim f \cdot g$	1 · 1'	+∞	-∞	-∞	+∞	+8	-∞	+∞	FI

c. Quotient de deux fonctions

Limite d'un quotient									
Si f a pour limite en a	l	l	+8	+8	-8	-8	±∞	l	0
Si g a pour limite en a	ľ≠O	±8	l'>0	l'< 0	l'>0	l'<0	±∞	O ₋ +	0
Si $\frac{f}{g}$ a pour limite en a	$\frac{l}{l'}$	0	+∞	-∞	-∞	+∞	FI	±∞	FI

d. Limite d'une fonction rationnelle en l'infini

La limite d'un polynôme en l'infini est égale à la limite de ses monômes de plus haut degré en l'infini

e. Limite d'une composé de deux fonctions

si
$$\lim_{x \to a} u(x) = b$$
 et $\lim_{u \to b} f(u) = c$ alors $\lim_{x \to a} f(x) = c$

6. <u>Limites et inégalités</u>

a. Comparaison de limites finies

si
$$\forall x \in \mathbb{R}$$
 $f(x) \leq g(x)$ $\lim_{\substack{ou \xrightarrow{x \to a \\ x \to \pm \infty}}} f(x) = L$ et $\lim_{\substack{ou \xrightarrow{x \to a \\ x \to \pm \infty}}} g(x) = L'$ alors $L \leq L'$

b. Théorèmes de comparaison

$$\begin{array}{ll} -\underbrace{\operatorname{comparaison\ avec}_{-\infty}:}_{\text{si}} \forall x \in \mathbb{R} \quad f(x) \leq g(x) & \lim_{\substack{ou \ x \to a \\ x \to \pm \infty}} g(x) = -\infty \\ \text{alors} \quad \lim_{\substack{ou \ x \to a \\ ou \ x \to \pm \infty}} f(x) = -\infty \end{array}$$

$$-\frac{\text{comparaison avec} + \infty}{\text{si}} \cdot \forall x \in \mathbb{R} \quad f(x) \leq g(x) \qquad \lim_{\substack{ou \xrightarrow{x \to a \\ x \to \pm \infty}}} f(x) = +\infty$$

$$\text{alors} \quad \lim_{\substack{ou \xrightarrow{x \to a \\ x \to \pm \infty}}} g(x) = +\infty$$

c. Théorème d'encadrement dit « théorème des gendarmes »

si
$$\forall x \in \mathbb{R}$$
 $g(x) \le f(x) \le h(x)$ $\lim_{\substack{ou \ x \to a \\ x \to \pm \infty}} g(x) = L$ et $\lim_{\substack{ou \ x \to a \\ x \to \pm \infty}} h(x) = L$ alors $\lim_{\substack{ou \ x \to a \\ x \to \pm \infty}} f(x) = L$

7. Asymptote oblique

 $\lim_{x\to\infty} f(x) = ax + b \iff \text{la droite d'équation} \quad y = ax + b \quad \text{est asymptote oblique}$ à la courbe représentative de f en $\pm \infty$